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ABSTRACT
Today’s Internet contains a large portion of “dynamic” IP
addresses, which are assigned to clients upon request. A sig-
nificant amount of malicious activities have been reported
from dynamic IP space, such as spamming, botnets, etc..
Accurate identification of dynamic IP addresses will help
us build blacklists of suspicious hosts with more confidence,
and help track the sources of different types of anomalous
activities. In this paper, we contrast traffic activity patterns
between static and dynamic IP addresses in a large campus
network, as well as their activity patterns when countering
outside scanning traffic. Based on the distinct character-
istics observed, we propose a scanning-based technique for
identifying dynamic IP addresses in blocks. We conduct an
experiment using a one-month data collected from our cam-
pus network, and instead of scanning our own network, we
utilize identified outside scanning traffic. The experiment
results demonstrate a high classification rate with low false
positive rate. As an on-going work, we also introduce our
design of an online classifier that identifies dynamic IP ad-
dresses in any network in real-time.

1. INTRODUCTION
Knowledge of IP address assignments, e.g., whether IP

addresses within an address block are dynamically or stat-
ically assigned, can provide valuable information and hints
in managing and securing one’s network. For instance, on
the Internet at large, a significant amount of malicious ac-
tivities have been reported (see, e.g., [1–5]) from dynamic IP
addresses, such as spamming, botnets, and so forth. Infor-
mation regarding the source IP addresses of suspected mali-
cious activities (e.g., email spam) not only provides us with
more confidence in classifying such malicious activities, but
also allows us to associate multiple instances of such activi-
ties from the same dynamic address block over time to better
track the origins of attackers. Within a campus or enterprise
network, dynamic addresses are typically assigned to mobile
devices (e.g., laptops) which tend to roam and be used in
unprotected networks (e.g., the wireless hotspot in a coffee
shop or at home), thus are more likely to get infected with
malware. Hence, knowledge of such address blocks can assist
network operators/security analysts of a campus/enterprise
network in focusing additional scrutiny to suspicious activ-
ities on these blocks, detecting and preventing attacks from
inside (compromised) hosts. For the purpose of profiling
the activities and behavior of hosts within a network [6, 7],

knowledge of dynamic and static addresses is also important
in building and associating behavior models to appropriate
hosts for anomaly detection and behavior tracking.

Information regarding whether an IP address is dynamic
or not may not be readily available, even for those within
one’s own network. This is particularly true for large net-
works with decentralized management, where large blocks of
addresses are allocated and delegated to sub-organizations
which control and manage how these addresses are assigned
and utilized. While it is possible to infer whether an IP
address is dynamic or static by its DNS name, such an ap-
proach may not always be feasible nor accurate for a variety
of reasons. Not all IP addresses have DNS names assigned
or registered. Furthermore, from the DNS name, it may not
be completely clear whether an IP address is dynamic or
static. In addition, DNS records are not always kept up-to-
date. Hence, alternative methods for accurately classifying
IP addresses, in particular for identifying dynamic IP ad-
dresses, are needed.

In this paper, we investigate the feasibility of classifying
IP addresses based on “usage patterns” or “traffic activities”
on a large campus network. More specifically, we consider
the following problem setting. Suppose that at a certain
vantage (e.g., a border router of a campus network), we
can passively observe – and if necessary, inject active probes
– traffic coming into or going out of a particular address
block (of an appropriate size, say, /24 or /28). Is it possi-
ble to infer and classify the said address block as dynamic
or static based solely on such observations? Here, in ac-
cordance within common practice, we assume that the ad-
dresses within the whole contiguous block, typically in size
of 2k, for some (relatively) small k, e.g., k = 3, 4, . . . , 8,
are assigned as dynamic (i.e., allocated to hosts via DHCP
with a limited lease time), or static (i.e., allocated to hosts
“permanently”). To answer this question, we extract and
analyze the traffic activities of dynamic and static address
blocks of a large campus network with diversified user pop-
ulation and usage patterns, utilizing a month-long netflow
data collected at the campus border router.

As the basis for our study, we first perform an exhaustive
DNS look-up to extract the registered DNS name, if avail-
able, of each IP address of a class B address block within the
campus network. We develop a simple name-based heuristic
to classify individual IP addresses into four groups, Dynamic
and Static, as well as NoName which contains IP addresses
with no registered DNS names, and Undecided which con-
tains those IP addresses we cannot classify with high con-
fidence whether they are static or dynamic based on their



DNS names alone. Using the classification of individual IP
addresses, we then examine and infer the block structures
of the address assignments to group individual dynamic or
static IP addresses into (contiguous) address blocks of ap-
propriate sizes. This outcome of name-based classification
process is used for two purposes: they provide us with a set
of sample dynamic and static address blocks that are used
for our subsequent analysis of traffic activity patterns of dy-
namic and static address blocks; they also serve as training
and test datasets for the evaluation of a simple scanning-
based dynamic address classifier we have designed.

In analyzing the usage patterns of dynamic and static ad-
dress blocks, we introduce a simple apparatus, (traffic) ac-
tivity matrix, to succinctly represent the (incoming and out-
going) traffic activities of an address block, and put forth
several metrics to mathematically characterize their proper-
ties. By examining the overall traffic activity patterns on an
address block, we find that while there are some discernible
differences between dynamic and static address blocks, they
are unlikely to yield a useful and robust classifier to distin-
guish dynamic and static address blocks. The most strik-
ing feature of the overall traffic activity patterns lies in the
strong difference between incoming traffic activities and out-
going traffic activities, regardless of the types of address
blocks. This striking difference is caused by the prevalence
of wide-spread scanning activities, which typically elicit dif-
ferent responses from dynamic and static address blocks,
and thus can be serendipitously exploited in classifying dy-
namic and static address blocks. Based on this key obser-
vation, we develop a simple scanning-based dynamic address
classifier consisting of two hypothesis tests on the responses
to scanning traffic of an address block. We also explore the
crucial parameters for implementing such a classifier in prac-
tice. Extensive evaluation shows that this simple classifier
is capable of identifying dynamic address blocks with fairly
high accuracy and relatively low false positive rate.1

Our study not only provides an affirmative answer to the
question posed earlier, but also shows that we can utilize
the prevalence of outside scanning traffic to our advantage:
by focusing on outside scanning traffic and the responses
they elicit, we can serendipitously gain certain knowledge
about the behavior of our own network, e.g., dynamic and
static address assignments, and use such knowledge to bet-
ter defend our own network. We are currently exploiting
such knowledge to generalize the gray space analysis and
host profiling techniques for rapid and high-fidelity detec-
tion of scanning and other malware activities. To the best of
our knowledge, our paper is the first study that investigates
the traffic activity patterns of dynamic and static address
blocks; without relying on DNS names, our scanning-based
dynamic address classifier is the first classifier based solely
on direct observation and analysis of traffic behavior.

The remainder of the paper is organized as follows. We
describe the DNS name-based classification mechanism and
its results in Section 2. In Section 3, we define the activity
matrix and introduce different metrics to characterize the
traffic activity patterns. Section 4 focuses on the patterns
of scanning traffic activities. The scanning-based dynamic

1Part of the classification errors can in fact be attributed
to either the imprecision in the name-based classification or
“anomalous” usage patterns of certain address blocks, e.g.,
static address blocks assigned to computers in a lab which
are turned on only during the business hours.

address classifier is explained and evaluated in Section 5.
We conclude the paper in Section 6.

2. DNS NAME-BASED CLASSIFICATION
In this section we first devise a simple DNS-name based

heuristic for classifying individual IP addresses into dynamic,
static and other groups. Using this classification, we also in-
vestigate the block structures of dynamic and static address
assignments, based on which we extract dynamic and static
address blocks of appropriate sizes. The outcomes of this
name-based classification process will be used in the subse-
quent sections both for analysis of the activity patterns of
dynamic and static address blocks, and for design and eval-
uation of a scanning-based dynamic address block classifier.
Dataset. In this study, we utilize a month-long archive of
netflow records collected at the border router of our campus
network. The campus network owns three class B (/16) IP
blocks with a total of 196608 IP addresses. The collected
netflow includes all bidirectional flow traffic between inside
and outside hosts for one whole month. Unless otherwise
specified, the study uses the netflow records of traffic to and
from one of the 3 class B address blocks.

2.1 Classifying Individual IP Addresses using
DNS Names

DNS names of hosts are in general chosen using certain
(unwritten) convention. For instance, for hosts assigned
with static IP addresses, users or network operators typically
pick names that are mnemonics (e.g., www for web servers,
mail for email servers, and various (typically) proper nouns
such as place or person names for desktops, etc.). In con-
trast, IP addresses within a dynamic address block, if they
are named at all, are typically named with a keyword such as
“dhcp”, “dip”, “dialup” and often affixed with a number or
(part of) its IP address, e.g., dhcp-11 or dip.101.31. Tak-
ing advantage of these common naming practices, we devise
a simple name-based heuristic for IP address classification.

We perform an exhaustive look-up for all the addresses of
one of the three class B address blocks within our campus
network, using Reverse DNS (rDNS) and whois database [8].
Based on the results of this exhaustive lookup, we classify
the individual IP addresses into four categories. For those
IP addresses that the lookup fails, we put them in the NoN-
ame category. This category constitutes 35.6% of all IP
addresses. For the remaining IP addresses for which rDNS
returned DNS names, we classify them based on the key-
words contained in the DNS names. We identify a list of
keywords in which we have high confidence that they are as-
sociated with dynamic IP addresses, such as “dhcp”, “dip”,
“dynamic”, “wireless”, etc. We put these addresses into the
category Dynamic. This category accounts for 27.6% of all
IP addresses. The third category, Undecided, contains those
IP addresses (roughly 9.9%) based on the names of which we
cannot infer whether they are static or dynamic with high
confidence. The common keywords contained in their names
are “ej” (likely standing for “Ethernet jack”), “x”, or other
similar keywords. Depending on how they are allocated to
users and the way users utilize them, these IP addresses can
resemble dynamic IP addresses in some cases, and static IP
addresses in other cases. For all the remaining addresses
(26.9%), we place them into the Static category. Manual in-
spection of their DNS names shows that nearly all of them
contain keywords such as “www”, “mail”, or some forms of



user-chosen mnemonics for client machines.
From the above results, IP address classification using

DNS names is a heuristic that may not always work. We
see that for a significant portion of IP addresses, the classi-
fication either fails or is indecisive. While a large portion of
the IP addresses within the NoName category are unused or
“dark” (judging based on the month-long netflow records),
there are a non-negligible number of them that indeed are
part of the “used” IP address space, i.e., assigned to “live”
hosts (either dynamically or statically) for some period of
time during the one-month period under study. These IP
addresses, together with those in the Undecided category,
comprise at least 15% of a class B address block. In addi-
tion, as mentioned in the introduction, DNS records may
not always be kept up-to-date. We also note that such an
approach can be quite laborious, especially for a large ad-
dress space, because of its need for some level of manual
inspection: this is because it is impossible to have a com-
plete list of keywords for classifying dynamic and static IP
addresses. Nonetheless, due to its use of “domain knowl-
edge” (e.g., the naming conventions of an organization), the
name-based classification heuristic enables us to classify a
subset of IP addresses with fairly high confidence. It thus
serves as a good starting point for our study.

2.2 Block Structures of Address Assignments
Using the classification of individual IP addresses, we now

examine and infer the block structures of IP address assign-
ments, with the goal to determine the appropriate block
sizes for grouping dynamic and static IP addresses into con-
tiguous address blocks. This is motivated by the fact that
in general, IP addresses are allocated as a block of dynamic
or static addresses – this is particularly true for dynamic
addresses which are allocated to and assigned by DHCP
servers. For this reason, we examine blocks of contiguous
IP addresses with varying block sizes, and investigate the
percentage of IP addresses belonging to the same category
as well as the likely mixture of different categories.

First, we observe that a high percentage of IP addresses
in the noname category tend to interleave with one of the
other 3 categories. This is not surprising – network admin-
istrators in general allocate addresses in blocks, a subset of
which may be initially assigned to hosts or used for dynamic
address assignment via DHCP. As a result, only a portion
of these addresses were given DNS names, with the rest left
unnamed. Based on this observation, we consider noname
IP addresses interleaved with IP addresses from another cat-
egory to belong to that category (dynamic, static or unde-
cided). Henceforth, we consider only blocks of IP addresses
in three categories: dynamic, static and undecided, treating
noname IP addresses that are interleaved with one of these
three categories as part of that category2.

Fig. 1 shows the percentage of dynamic, static and unde-
cided IP addresses that are allocated in various block size,
where the x-axis represents the block size (/24 through /30)
and the y-axis represents the percentage of IP addresses in
blocks (out of the total number of the class B IP addresses).
In particular, Fig. 1[a] shows the percentage of IP addresses
in complete blocks, i.e., blocks for which all the IP addresses

2We find that almost all blocks (of size 16 or larger) that
contain only noname IP addresses are “dark” or unused, and
thus are uninteresting from the perspective of our study. So
we do not consider them here for ease of exposition.
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Figure 1: Percentage of IP addresses in blocks

belong to the same category, whereas Fig. 1[b] shows the
percentage of each category type for which 90% of the IP
addresses within the block belong to the same category.

From Fig. 1[a] we see that dynamic blocks account for only
4% of /24, but with decreasing block sizes, their percentage
increases up to 29% of /28 and slightly more than 30% of
/30 block sizes. Whereas, static IP address blocks tend to
be allocated in large block sizes, accounting for 22% and
32% for /24 and /28 block sizes, respectively. When using
the 90% addresses belonging to one category as the criteria
to group and classify address blocks, Fig. 1[b] shows both
dynamic and static blocks have similar percentage across
all block sizes. Together they account for the majority of
their corresponding individual IP addresses within the class
B address space, as the undecided blocks comprise only a
small percentage in both the cases of complete and 90%
blocks.

From Figs. 1[a] and [b], we see that using the 90% ad-
dresses belonging to one category as the criteria to group and
classify address blocks, the percentage of dynamic IP ad-
dress blocks increases significantly, especially for larger block
sizes. Careful inspection reveals that this is mostly because
dynamic address blocks tend to contain a few “static” IP
addresses, the names of which do not contain the keywords
used for dynamic address classification. These names al-
most invariably contain certain keywords, indicative of spe-
cial servers (e.g., DHCP or DNS servers) or devices (access
points, switches/routers), e.g., “ac” for access points in a
dynamic wireless address block. In contrast, the percentage
of static address blocks does not change significantly. We
find that occasionally, the static address blocks would con-
tain IP addresses that fall into the undecided categories. In
addition, there are a small number of blocks with more than
10% mixture of other types, containing especially a fair por-
tion of the undecided IP addresses. These are “mixed-usage”
address blocks, or address assignments that do not fall on
the conventional boundary of a power of 2.

2.3 Sample Dynamic and Static Blocks
Based on the results from the previous two subsections,

we extract a (sub)set of dynamic and static address blocks
which will be used as sample datasets for our study of us-
age or traffic activity patterns of dynamic and static ad-
dress blocks, as well as for the design and evaluation of a
scanning-based dynamic IP address block classifier. Balanc-
ing between the block size (or the number of IP addresses
within the block) and number of blocks available, we choose
to consider two block sizes /24 (with 256 addresses within
each block) and /28 (with 16 addresses). In choosing these



dynamic and static address blocks, we also exclude those
address blocks containing a large portion of noname IP ad-
dresses, which do not generate any traffic within the month,
thus are “dark” or unused. In other words, these address
blocks tend to have only a small number of assigned IP ad-
dresses, with little traffic activities. They are therefore not
very useful for our study. In the following, we describe the
criteria we use for selecting the sample dynamic and static
address blocks.

The dynamic and static address blocks are selected using
the following two conditions: 1) there are at least 40% of
the IP addresses within the block in which each IP send at
least one outgoing traffic during the entire month of Febru-
ary 2006 (i.e., the corresponding IP address is not “dark”),
2) at least 90% of these IP addresses satisfying 1) are either
exclusively dynamic or exclusively static. Using this crite-
ria, for /24 block size, we obtain 35 dynamic and 10 static
/24 blocks, and for /28 block size, we obtain 1034 dynamic
blocks and 289 static blocks. These sample address blocks
are used for our study in the subsequent sections.

3. ACTIVITY PATTERNS OF DYNAMIC VS.
STATIC BLOCKS

In general, dynamic and static address blocks are allo-
cated for different usages. For example, static addresses are
typically assigned to “fixed” or “long-lived” machines (e.g.,
servers or desktops) on a network, while dynamic addresses
are assigned to “mobile” hosts (e.g., laptops) that come and
go. This is particularly true for a campus network. Hence,
intuitively, we would expect to see differing traffic or activ-
ity patterns on different types of address blocks, reflecting
the usages and roles of the machines that are “active” on
the address blocks over time. In this section, we first intro-
duce a simple activity matrix to represent the overall (either
incoming or outgoing) activity patterns of an address block
over time, namely, when there is incoming traffic towards or
outgoing traffic from certain IP addresses within the address
block. We then put forth several metrics to characterize and
compactly summarize the overall activity patterns of an ad-
dress block. Using the sample dynamic and static address
blocks identified using the name-based heuristic in the pre-
vious section, we study and analyze the activity patterns of
these address blocks.

3.1 Activity Matrices
We study the “activity patterns” of an address block (say,

a /24 or /28 address block) by examining when there is in-
coming traffic towards or outgoing traffic respectively from
some addresses within the address block over a certain ob-
servation period T , say, a day or a week. For simplicity, we
divide the observation period T into discrete time slots of
length τ . Unless otherwise specified, in the remainder of the
paper we choose T to be one day (from 0th hour to 24th
hour), and τ to be 5 minutes. This gives us n := T/τ = 288
5-minute time slots in a day. Let m (a power of 2) be the
size of the address block. To succinctly represent the ac-
tivity patterns of the incoming and outgoing traffic of the
address block, we introduce two matrices, IA := [iai,t]m×n

and OA := [oai,t]m×n, referred to as the incoming traffic
activity matrix and the outgoing traffic activity matrix, re-
spectively. For IA, we define iai,t = 1 if we observe incoming
traffic towards the ith IP address of the block at any time

within the tth time slot3; the entries for OA are similarly
defined.

Fig. 24 displays the scatter plots of the IA and OA matri-
ces for four (two static and two dynamic) sample /24 address
blocks using the netflow data collected at our campus bor-
der router on 02/08/2006. One striking observation from
the scatter plots is the sharp difference between the IA and
OA activity matrices, regardless whether it is a dynamic or
static address block: a) incoming traffic is far more “active”
(i.e., with more 1’s) than outgoing traffic; and b) while OA’s
of different address blocks are at times fairly distinct, IA’s
of all address blocks look remarkably similar. This visual
observation suggests that a vast majority of incoming traffic
activity towards each address block is largely independent of
and agnostic of the nature, roles or “liveness” (i.e., whether
an IP is currently assigned to a live host) of the hosts on
the address block. In contrast, the outgoing traffic activ-
ity matrix reveals more information regarding the address
block: three of them have a clear “time-of-day” pattern with
most activities concentrated during the business hours; the
fourth one (residential hall) is active nearly all day except
during the wee hours of the morning. Comparing the OA’s
of static and dynamic address blocks, however, there are
few “outstanding” features that distinguish the dynamic ad-
dress blocks from the static ones, except that the OA’s of
the static blocks tend to have quite a few vertical bars, in-
dicating that nearly all machines on the block are active at
certain time slots.

3.2 Characterizing Traffic Patterns
We introduce several metrics to compactly and mathemat-

ically characterize the properties of the activity matrices.
Given an incoming traffic activity matrix IA = [ai,t]m×n,
let â =:

Pm

i=1

Pn

t=1 ai,t represent the total number of 1’s
in IA, or the total amount of incoming traffic “activities”
towards the address block during the time period T . Define
the density of IA, d(IA) := â/(m×n) (we will drop the ref-
erence to IA when the context is clear), which measures the
“average” activity per address per time slot. Intuitively, for
incoming traffic, d(IA) tells us on the average how likely we
may see activity to a random address at a random time slot.
For each row (i.e., IP address) i, let pi· = (

P

t
ai,t)/â, be the

percentage of incoming traffic activities towards the address
i; and for each column (i.e., time slot), let p·t = (

P

i
ai,t)/â,

be the percentage of incoming traffic activities occurring at
time slot t. We define the address diversity (AD(IA)) and
time diversity (TD(IA)) as follows:

AD(IA) :=

−
m
P

i=1

pi· log pi·

log m
and TD(IA) :=

−
n

P

t=1

p·t log p·t

log n
.

By definition, AD(IA) and TD(IA) are the normalized en-
tropies (or relative uncertainty [6]) of the distributions {pi·}
and {p·t}. Intuitively, the address diversity AD(IA) reflects
how random or uniform the incoming traffic touches the ad-
dresses within a block, while the time diversity TD(IA) re-
flects how the incoming traffic activities are spread out over

3Namely, we observe at least one netflow with the said IP ad-
dress as the destination, an outside IP address as the source
address, and a beginning time stamp within the time slot.
4Due to privacy concerns, we have randomized the order of
the addresses within each block.



(a) Static address block (lab network) IA vs. OA (b) Static address block (department network) IA vs. OA

(c) Dynamic address block (campus wireless network) IA
vs. OA

(d) Dynamic address block (residential hall network) IA vs.
OA

Figure 2: IA and OA matrices (static address blocks vs. dynamic address blocks)
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time. For example, AD(IA) closer to 1 (thus pi· being ap-
proximately equal) means that among those receiving any
incoming traffic, the incoming traffic touches each address
roughly equally (albeit perhaps at different times). Like-
wise, TD(IA) closer to 1 means that among the time slots
where there is incoming traffic, the incoming traffic activi-
ties spread over these time slots roughly equally (albeit per-
haps touching different addresses). For an outgoing traffic
activity matrix OA, the density d(OA), address diversity
AD(OA) and TD(OA) are defined in the same fashion, and
can be similarly interpreted.

In Fig. 3, we plot these metrics of the incoming and outgo-
ing traffic activity matrices IA and OA for the sample /24
dynamic and static address blocks identified in the previ-
ous section, using the netflow data collected on 02/06/2006.
Comparing d(IA) (y-axis) and d(OA) (x-axis) of each block
shown as a point (d(OA), d(IA)) in Fig. 3(a), we see that
the incoming traffic activities are much denser than the
outgoing traffic activities for each block, whether it is dy-
namic or static. In terms of address diversities, we see that
AD(IA) > AD(OA) for all address blocks. In particular,
incoming traffic touches each address with nearly equal fre-
quencies; for outgoing traffic, static address blocks in general
have a lower AD(OA) than dynamic address blocks, indicat-
ing that activities on the static address blocks tend to be less
equally distributed among the (active) addresses, while dy-
namic ones are likely more equally distributed. In terms of
time diversities, both TA(IA) and TA(OA) are larger than
0.9, indicating that traffic activities tend to be more or less
equally distributed among all the time slots that are active
(i.e., with incoming or outgoing traffic).

All in all, we see that by examining the overall traffic
activity patterns on an address block, while there are some
subtle but discernible differences between dynamic and static
address blocks, they are unlikely to provide us with a useful
and robust classifier to distinguish dynamic and static ad-
dress blocks. The most striking feature of the overall traffic
activity patterns lies in the strong difference between incom-
ing traffic activities and outgoing traffic activities, regardless
of address blocks. As will be explained in the next section,
the culprit here is the prevalence of wide-spread scanning
activities on the Internet. In the next section we zero in
on these scanning activities, and investigate whether there
are significant differences in responses from dynamic and
static addresses to such scanning activities. In section 5, we
will exploit these differences to design a robust classifier for
identifying dynamic and static address blocks.

4. IMPACT OF OUTSIDE SCANNING ON
ACTIVITY PATTERNS

Based on our observations in the previous section, there
is a strong difference between the densities of incoming and
outgoing traffic activities in all the sample address blocks.
There are far more incoming traffic activities than outgo-
ing traffic activities. Intuitively, this can be caused by a
large amount of unproductive incoming traffic, which gets
few responses from the targeted network. In this section, we
study one of the major sources of such unproductive traf-
fic, the scanning traffic. We first describe our method for
extracting scanning traffic and show the impact of scanning
traffic on incoming traffic activity. We then use the three
metrics defined in the previous section to characterize the
incoming and outgoing activities of scanning traffic. The

distinct outgoing scanning traffic activity pattern from dy-
namic blocks provides us with the intuition of identifying
dynamic address blocks through scanning.

4.1 Impact of Scanning Traffic
In terms of scanning traffic, the incoming activities are

referred to as the scanning traffic itself, while the outgo-
ing activities consist of all the responses to scanning traffic.
To study the impact of scanning traffic, we apply the IP
gray space analysis technique described in [9] to the netflow
dataset and identify a set of 6050 scanners on 02/08/2006.
Meanwhile, we identify all the ports that those scanners tar-
get, and extract all the flows from the identified scanners to-
wards those targeted ports and refer to it as scanning traffic.
To single out the responses toward scanning, we match each
incoming scanning flow within a time window T , say, 30
minutes. We consider an outgoing flow from our campus
network as a response to scanning, if, within T , either 1) it
matches the 5-tuple5 of a previously observed TCP or UDP
scanning flow, or 2) it is an ICMP flow and matches the
2-tuple6 of a precedent incoming ICMP or UDP scanning
flow.

To describe the activity patterns of scanning, we define
the activity matrices IA and OA for scanning traffic simi-
larly as in section. 3. Fig. 4 illustrates the scatter plots of
IA and OA matrices of scanning traffic for two static ad-
dress blocks and two dynamic IP blocks corresponding to
those in Fig. 2. Comparing with Fig. 2, we observe even a
larger difference between incoming and outgoing activities.
Furthermore, we find that vertical bars still exist in the IA
matrices of scanning traffic. Investigation on those verti-
cal bars suggests that they are from coordinated scanners
(different scanners that cooperatively scan a particular net-
work) or blockwise scanners (scanners that choose target on
the basis of blocks and scan all the addresses within each
block). In contrast to incoming activities which look similar
in all the blocks, the outgoing activities of scanning traffic
reveal much distinction between static address blocks and
dynamic address blocks. In OA matrices of static blocks,
we observe a number of vertical bars corresponding to those
in IA matrices, which indicates responses from all the static
addresses within the same block towards those coordinated
scanning or blockwise scanning. In contrast, even though
there are quite a number of vertical bars in the IA matri-
ces of dynamic blocks, no vertical bar has been observed
in their OA matrices, instead, the responses from dynamic
blocks depict a more random manner.

4.2 Characterizing Scanning Traffic Patterns
To characterize our observations from IA and OA matri-

ces of scanning traffic, we apply those metrics, density (d),
address diversity (AD) and time diversity (TD) defined in
the previous section to the IA and OA matrices of scanning
traffic. In Fig. 5, we plot these metrics of the incoming and
outgoing scanning traffic activities for the same /24 sample
blocks in the previous section. In Fig. 5(a), comparing with
Fig. 3(a), all the points (d(OA), d(IA)) move away from the
diagonal line, which indicates a much more significant differ-
ence between incoming and outgoing activities of scanning

55-tuple is referred to as source IP, destination IP, source
port, destination port and protocol.
62-tuple is defined as the pair of source IP and destination
IP.



(a) Static address block (lab network) IA vs. OA (b) Static address block (department network) IA vs. OA

(c) Dynamic address block (campus wireless network) IA
vs. OA

(d) Dynamic address block (residential hall network) IA vs.
OA

Figure 4: IA and OA matrices of scanning traffic (static address blocks vs. dynamic address blocks)
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Figure 5: IA and OA metrics of scanning traffic (static address blocks vs. dynamic address blocks)



traffic. In other words, the difference between incoming traf-
fic activities and outgoing traffic activities demonstrated in
Fig. 5(a) is largely caused by scanning traffic. Furthermore,
we observe that points corresponding to dynamic address
blocks are further away from the diagonal line than static
ones, meaning that in dynamic blocks, the incoming scan-
ning traffic activities are much denser than outgoing scan-
ning traffic activities. Except for the existence of firewalls
which block a portion of the scanning traffic, the difference
between static and dynamic blocks in terms of traffic densi-
ties is caused by their different address allocation strategies.
A static IP address is usually associated with a live end host
for most of the time; hence, the probability of observing a
response from a static address to scanning traffic is quite
large. On the contrary, a dynamic IP is assigned to clients
upon request and released frequently; therefore, there is an
extended period of time everyday that a dynamic IP address
remains unassigned; thus, the chance of observing responses
from a dynamic address is relatively small.

Fig. 5(b)(c) depict the address diversity (AD) and time
diversity (TD) of static address blocks vs. dynamic address
blocks, respectively. Despite the fact that incoming scanning
traffic is random (AD(IA) and TD(IA)) are both close to
1) across all the blocks regardless of static or dynamic, we
notice that AD(OA) and TD(OA) values of static address
blocks are generally smaller than those of dynamic address
blocks. In other words, the responses from dynamic blocks
are more random or uniform than those from static blocks.
This can be explained by the different usages of static ad-
dresses and dynamic addresses. The addresses within a par-
ticular dynamic block are usually assigned to clients fol-
lowing a specific IP assignment policy which balances the
workload among all the dynamic IP addresses. Meanwhile,
at each time interval, there is usually only a small portion
of dynamic IP addresses corresponding to live end hosts, so
within each time slot, we observe little variation in the num-
ber of responses; albeit the existence of coordinated or block-
wise scanning activities. On the contrary, static addresses
within the same block respond simultaneously towards co-
ordinated or blockwise scanning traffic, which decreases the
time diversity of outgoing scanning traffic activities. Mean-
while, the existence of hosts with different workloads, such
as servers, lab machines, etc. makes the outgoing scanning
activities less random among all the static addresses within
the same block.

Intuitively, in order to distinguish static and dynamic ad-
dress blocks, we can utilize the strong difference in the out-
going scanning traffic activity patterns between static and
dynamic address blocks. We can launch a number of scan-
ning sequences towards a particular address block and mea-
sure the response patterns from that block. If less responses
are observed and those responses are quite random, we con-
sider the block to be a dynamic address block. Utilizing
this idea, in the next section, we describe our design for a
classifier which identifies dynamic address blocks through
sequences of scanning.

5. A SCANNING-BASED DYNAMIC ADDRESS
CLASSIFIER

As indicated in the previous section, when facing the same
scanning traffic, static blocks and dynamic blocks demon-
strate distinct response patterns. In this section, we first
present an (ideal) statistical model for characterizing the

responses from an IP address block. We then propose two
hypothesis tests for classifying whether an address block is
dynamic based on the response model. We devise a dynamic
address block classifier by combining these two hypothesis
tests and evaluate its performance using the data from our
campus network. Finally, we discuss several important is-
sues in implementing such a classifier in practice.

5.1 Modelling Responses from Address Blocks
We model the responses from a particular address block

(either static or dynamic) towards scanning traffic as follows.
Suppose there is a scanning sequence at time t towards an
entire address block with size m. For any IP address i within
the block, assume it has a fixed probability to respond to
the scanning traffic, say, pi, then its response to the scanning
traffic can be treated as a Bernoulli random variable, which
we denote as xit, where xit = 1 and xit = 0 stand for the
cases of response and nonresponse, respectively.

Now we consider the address block level, let ~xt = [x1t, x2t, · · · , xmt]
T

denote the vector of responses from all the m IP addresses
within the block at time t, or we call it a block response
vector. The block response vector ~xt is considered as a
multivariate Bernoulli random variable with mean vector
~p = [p1, p2, · · · , pm]T and covariance matrix Σ0, where each
entry σij in Σ0 equals E[(xi − pi)(xj − pj)].

Assume there are n independent scanning sequences to-
wards the block, then we will observe n i.i.d response vectors,
~x1, ~x2, · · · , ~xn. Let ~y =

Pn

t=1 ~xt, then ~y follows a multivari-
ate binomial random distribution with mean vector n~p and
covariance matrix nΣ0. Given a large sample of response
vectors, the multivariate binomial random variable ~y can be
approximated by a m-dimensional multivariate normal ran-
dom variable with mean vector n~p and covariance matrix
nΣ0.

We denote the response rate vector ~̄x as ~̄x = ~y/n, then ~̄x
follows a multivariate normal distribution with mean vector
~µ and covariance matrix Σ, where ~µ = ~p and Σ = 1

n
Σ0.

In order to estimate the parameters ~p, Σ0, we either ac-
tively launch or passively observe n scanning sequences at
different times towards the same address block, from which
we can obtain n response vector samples. The unbiased es-
timator for ~µ will be the sample mean of the n response
vectors, which is [x̄1, x̄2, · · · , x̄m]T , and the unbiased esti-
mator for Σ0 is the sample covariance matrix S0, with each

entry given by sij = 1
n−1

n
P

k=1

(xik − x̄i)(xjk − x̄j). Thus, the

unbiased estimator for Σ is S = 1
n
S0.

5.2 Testing of Responses from Dynamic Blocks
Using this model, we can describe the distinct properties

of responses from dynamic address blocks into hypothesis
tests, which can help us identify dynamic address blocks.
From our studies of outgoing activity patterns of scanning
traffic in the previous section, the two properties that char-
acterize responses from dynamic address blocks are: 1) IP
addresses within the same dynamic address block tend to
have equal response rates given a long-term observation. 2)
The majority of the addresses within a dynamic address
block are likely to have low response rates. In this section,
we interpret how we model each property into a hypothe-
sis test and how we choose parameters for those tests. At
the end of this section, we discuss how to build a classifier
by combining those two hypothesis tests to achieve the best



classification performance.
1) Test of level mean vector
Given a long observation time period, the response rates

of different dynamic IP addresses within the same block will
likely be equivalent. We specify this assumption as µ1 =
µ2 = · · · = µm. Intuitively, we classify an address block
to be dynamic if we have enough confidence to believe that
the response vectors from that block fit a m-dimensional
multivariate model with a level mean vector, which can be
described using the following hypothesis test:

H0 : µ1 = µ2 = · · · = µm vs. H1 : otherwise

To perform the hypothesis test, we first construct a compar-
ison matrix:

C =

0

B

B

@

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0

. . . . . . . . . . . . . . . .
0 0 0 · · · 1 −1

1

C

C

A

(m−1)×m

Hence H0 is equivalent to C~µ = ~0. Given the assumption
~̄x ∼ Nm(~µ, Σ), we know C~̄x ∼ Nm(C~µ, CT ΣC). Using the
Hotelling’s T 2 statistic [10], which is

t2 = n(C~̄x)T (CSCT )−1C~̄x

t2 follows the F -distribution, hence we reject H0 : C~µ = ~0
if

t2 >
(n − 1)(m − 1)

(n − m + 1)
Fm−1,n−m+1(α)

where Fm−1,n−m+1(α) is the upper 100α percentile of an F
distribution with m − 1 and n − m + 1 degrees of freedom.

Selecting α values from 0.1 to 0.001, we show the ROC
curve for the level test in Fig. 6(a).
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(b) low response rate test

Figure 6: ROC curves for two hypothesis tests

2) Test of low response rate
The response rate of each IP address within a dynamic

address block is usually smaller than that of a static ad-
dress block. Recall that from our response model, that the
response vector ~̄x ∼ Nm(~µ, Σ). To describe property of low
response rates of most addresses within a dynamic address
block, we introduce a parameter 0 < β, ~µ of a dynamic ad-
dress block should be closer to ~0 than to β~1. We specify it
in the following hypothesis test:

H0 : ~µ = ~0 vs. H1 : ~µ = β~1

If we accept H0, it means that the likelihood that an ob-
served response vector ~̄x comes from a multivariate normal
distribution with ~µ = ~0 is larger than the likelihood that it is
from a distribution with ~µ = β~1, which means we are more
confident that most of the addresses within the block have a

relatively smaller response rate compared with β, hence we
identify it as a dynamic block.

Under the normality assumption, comparison of those two
confidence levels is equivalent to comparing of two Hotelling’s
T 2 statistics, t0(~̄x) = n(~̄x − ~0)T S−1(~̄x − ~0) and t1(~̄x) =

n(~̄x−β~1)T S−1(~̄x−β~1), which stands for the statistical dis-

tance between ~µ and ~0 and between ~µ and β~1, respectively.
Consequently, when t0(~̄x) < t1(~̄x), we believe the block to be
dynamic. Choosing different β values (from 0 to 1), We show
the ROC plot for the overall response rate test in Fig. 6(b).

3) Combining two hypothesis tests
Because the two hypothesis tests characterize different as-

pects of dynamic address blocks in terms of their responses
towards scanning traffic, the dynamic address blocks will be
able to pass both hypothesis tests. In a word, under these
two hypothesis tests, our rule for identifying dynamic ad-
dress blocks is: An address block is considered as dynamic if
it passes both of the two hypothesis tests. If a block fails any
of those two hypothesis tests, we have enough confidence to
believe it is not a dynamic block.

5.3 Experiment Design
In our experiment, we choose block size to be 16 (/28

blocks) 7. Based on DNS names, we select totally 1323
blocks for our experiment, in which 1034 blocks are iden-
tified as dynamic blocks, and 289 of them are static blocks.

We collect scanning traffic targeted at those blocks, and
partition all the scanning flows into 5-minute intervals, or
scanning phases, based on their arrival time. Notice that due
to the huge amount of available scanning traffic, within each
scanning phase, each block is likely to be scanned multiple
times by different scanners. To maximize the chance of an
active IP address responding to scanning traffic, we consider
that there is a response from that address if it responds to
at least one of all the scanning flows touching it.

For each block, we have collected a sequence of response
vectors towards different scanning phases. However, to fulfil
the model assumptions, in our initial experiment, we choose
4 hours as the interval length between two chronologically
adjacent scanning sequences to assure the i.i.d assumption
of contiguous response vectors, meanwhile, we use all the
available scanning sequences within a month to guarantee a
large sample size so as to fulfil the normality assumption.
We will discuss the impact of different lengths of interval
and different number of scanning sequences on our detection
results.

In order to use the classifier to identify dynamic address
blocks, we need to combine the results of those two hypothe-
sis tests. Obviously, the combined classifier will reduce both
the classification rate and the false positive rate. However,
due to the fact that two hypothesis tests characterize dif-
ferent aspects of responses from dynamic address blocks, we
expect to see a small decrease in classification rate but a
large decrease in false positive rate; hence, we select param-
eters α,β such that they provide a high classification rate as
well as a moderate false positive rate. From the ROC curves
(Fig. 6(a)(b)), we choose β = 1 which gives 92.3% classifi-
cation rate and 42.9% false positive rate, and α = 0.1 which
produces a classification rate of 93.4% and a false positive
rate of 53.3%.

7For /29 and /30 blocks, the classifier also has equivalent
performance as /28 blocks. For blocks larger than /28, we
can classify it in an iterative way



5.4 Results
We apply the classifier to the 1323 block samples and

we obtain 90.1% classification rate and 24.9% false positive
rate. In other words, the classifier correctly predicts 90.1%
of the dynamic address blocks and 75.1% of the static ad-
dress blocks. An investigation of the misclassified blocks
reveals different situations when errors may occur.

The major causes of misclassifying static blocks into dy-
namic blocks are: 1) Due to firewall or other reasons, some
static machines do not response to majority of the scanning
traffic, this situation accounts for majority of the misclassifi-
cations. This also triggers our study of maximizing response
rate by choosing appropriate scanning ports, which we will
introduce at the end of this section. 2) Hosts that only
respond to scanning for a short period of time each day. In-
vestigation on their flow data indicates there is no outgoing
traffic from those hosts when they do not respond to scan-
ning traffic. Their domain names illustrate that they are
likely to be machines in student labs which are only turned
on for a short period each day.

For those misclassified dynamic address blocks, there are
two major causes: 1) Due to special dhcp assignment policies
which permanently assign most of the dhcp addresses within
a block to clients. If majority of the dhcp addresses within a
block are unchangingly assigned to clients, the classifier will
misclassify it into static blocks. 2) Heavily used wireless
network, such as computer science wireless network, where
almost all the IP addresses are fully utilized throughout the
day.

In a different perspective to evaluate the performance of
the classifier, we also obtain a list of IP addresses from the
network operator, which indicates the IP allocation infor-
mation in different types of internal networks, e.g. dormi-
tory network and two department networks. Our classifier
has identified 82.7% blocks that belong to dorm networks
as dynamic, compared to 61.5% dynamic blocks and 53.9%
dynamic blocks identified in two different department net-
works, respectively. It agrees with our domain knowledge
that dorm networks tend to have larger portion of dynamic
IP addresses.

Investigation on the classification results indicates that
the two-facet hypothesis testing method can accurately dif-
ferentiate static address blocks and dynamic address blocks.
The results also suggest that the majority of the errors are
caused by those outliers in static blocks and dynamic blocks,
whose activities and address allocation strategies contradict
the common definitions of static or dynamic addresses. Be-
cause we are implementing a classifier to identify dynamic
address blocks outside the campus network, in our next step,
we discuss some important implementation issues regarding
building a real-time classifier.

5.5 Choosing Implementation Parameters
From our previous experiment, we have obtained the pa-

rameters α, β based on the ROC curves. As our goal is
to identify dynamic address blocks in outside-campus net-
works, there is usually no existing scanning sequences to
utilize; instead, we need to scan the network multiple times.
When we launch scanning against a particular network, we
need to consider two parameters, the interval between adja-
cent sequences and the total number of scanning sequences.
This is the case, because a large enough interval between two
contiguous scanning sequences satisfies the i.i.d assumption

of different samples in the response model, meanwhile, a
large number of response vector samples is needed to fulfil
the requirement of the normality assumption in the model.

To select a proper interval length between two contiguous
scanning sequences, we test different intervals from 1 hour to
10 hours on the training dataset using one month scanning
traffic, Fig. 7(a) demonstrates the classification accuracy for
dynamic blocks vs. accuracy for static blocks.
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Figure 7: Classification results

Initially, we set the interval to be one hour and obtain
87.3% classification rate and 23.8% false positive rate. As
we increase the length of the interval until 5 hours, we ob-
serve an increasing trend in the classification rate and a
decreasing trend of false positive rate. After that, the per-
formance of the classifier becomes a little worse (89.9% clas-
sification rate and 26.6% false positive rate) because as the
interval length gets larger, the number of available scanning
sequences becomes limited. In a word, the classifier has the
best performance when the interval length is larger than 3
hours. It also indicates that the majority of usage time per
user are less than 3 hours for dynamic IP addresses.

Another important question in practice is how many times
we should scan an address block before we determine whether
it is a dynamic block or not. To answer this question, we
choose 4-hour interval between scanning sequences, and we
look at the change of the classification performance as we
increase the number of scanning sequences from 16 to 45
(Fig. 7(b)).

Starting at 16 sequences, the classifier has 88.2% classi-
fication rate and 30.8% false positive rate. From 20 to 45
sequences, we observe a slight increase of the classification
rate (from 89.3% to 90.3%), and a large decrease in the false
positive rate (from 30.4% to 25.9%). Therefore, the classifier
reaches a good performance with only a small sample size,
which is very helpful in real-time implementation, because
it does not require a large amount of scanning activity.

5.6 Selecting Scanning Ports
For the purpose of dynamic and static address classifi-

cation, selection of appropriate scanning ports is another
decision that needs to be carefully considered in practice,
whether we apply the scheme in a passive monitoring envi-
ronment (e.g., for classifying our own network) or for active
probing (e.g., for classifying a remote network by sending
scanning probes). This is because firewalls are often in-
stalled to block certain scanning activities, in particular,
those associated with known malware. In a large network
(e.g., a large campus network such as ours), there may be
multiple tiers of firewalls installed at various of levels of the
network with diverse policies. For instance, at our campus
network we have a campus-level firewall which blocks all out-



side traffic on well-known malware ports such as 137, 139,
445 and so forth. At various subnets within the campus,
firewalls may be also installed at internal gateway routers,
which often deploy filtering policies that are specific to the
role of the corresponding subnets. For example, some de-
partmental subnets may block certain peer-to-peer (P2P)
ports, which are typically allowed in dorm subnets. On the
other hand, some subnets (e.g., dorms) may block certain
service ports (e.g., web and ftp ports).

Hence, if not carefully selected, blocked scanning traffic
may skew the response rate and thus affect the accuracy of
the classification. The diversity of firewall policies also com-
plicates the task of scanning port selection. On the other
hand, we can in fact take advantage of the fact that different
subnets (i.e., address blocks) may “favor” (i.e., let through)
different scanning traffic to enhance the effectiveness and ac-
curate of dynamic address block classification by judiciously
selecting scanning ports that are address-block-specific.

Date Ports
02/03/2006 80,3372,4501,6129,5900
02/08/2006 4899,6129,5900,4000,8080
02/23/2006 80,4899,22,6000,5900

Table 1: Ports of top 5 response rates

02/08/2006 02/23/2006
Static blocks ICMP,80,443,4899,8080 22,80,4899,5900,6000

Residence Hall ICMP,7000,7001 ICMP,1024,3072
Campus Wireless ICMP,443,4000 ICMP,80,5900

Dial-up 1025,1026,1027,4899 1024,1025,1026,1027

Table 2: Ports with high response rates in different
address blocks

To illustrate the above points, we conduct a detailed study
of scanning traffic activities and their resulting responses (or
lack thereof) on various address blocks using the month-long
netflow records. Table 1 lists the top five ports with the
highest response rates on three different days of February
2006, from the perspective of the entire campus network.
We see that the top five ports tend to contain some well-
known service ports such as HTTP (80 or 8080), ssh (22),
X11 (6000), as well as some ports providing special remote
services or applications that have also some known vulner-
abilities such as 4899 (radmin – remote administrator de-
fault port), 3372 (Microsoft distributed transaction service
coordinator for window 2000), 5900 (vnc – virtual network
computer), 6129 (dameware remote admin), and so forth.
On the other hand, Table 2 shows that the ports that elicit
highest response rates on several static blocks as well as dy-
namic address blocks of three different types on two different
days can be quite different from those top five ports viewed
from a “global” (entire campus network) standpoint. These
results demonstrate that different types of address blocks
may “favor” different scanning traffic, due to the diversity
in their firewall policies as well as the nature of the machines
(and the applications) running within the blocks.

To evaluate the impact of scanning port selection on the
effectiveness and accuracy of IP address classification, we
perform series of experiments by selecting scanning traf-
fic using different scanning ports. Recall that in the pre-
vious subsections we used all scanning traffic within some
test periods (20 minutes) that are randomly selected and

spaced apart with a certain minimum threshold (the inter-
val length), say, 5 hours. As these results are the baseline
results, we conduct two series of experiments for each ad-
dress block: in the one series we select fixed sets of 5 ports
randomly chosen from the top 20 ports that elicit highest
response rates from the perspective of the entire campus
network; in the other series we select the top 5 ports that
elicit highest response rates from the perspective of a specific
address block under testing.

We find that for the first series of experiments using the
randomly selected five ports, the classification rates either
stay approximately the same for some blocks, or drop to
nearly 75% for some blocks. Likewise, the false positive rates
are either not affected significantly, or increase to nearly
35%. Detailed investigation reveals that for those blocks
with decreased classification rates or increased false positive
rates, there are two factors in play: first and the main fac-
tor is that using the randomly selected scanning ports, the
number of scanning sequences in each period may be dras-
tically reduced (sometimes to none), thereby significantly
skewing the testing results; and second, in the cases of scan-
ning sequences do exist in a test period, some of the ran-
domly selected ports do not elicit any response (although
the target IP addresses are “live”), perhaps because these
ports are blocked, or no services on these ports are running
on the machines, but the ICMP responses are blocked. In
contrast, when using the address-block-specific scanning port
selection (namely, the top five ports with highest responses),
the results display noticeable improvement over the baseline
results, with the classification rates increased by an average
of 3%, and false positive rate reduced by an average of 5%.
Due to space limitation, we do not include the detailed re-
sults here.

In summary, our results show that carefully selecting scan-
ning ports is important for IP address classification; more-
over, by using the address-block-specific selection strategy
– e.g., by selecting the scanning ports with the highest re-
sponse rates over an extended observation period, we can
further improve the classification rate and reduce the false
positive rate of our proposed scanning-based dynamic ad-
dress classifier. Such a selection strategy is feasible and
practical in a passive monitoring environment for serendip-
itously learning and classifying internal IP address blocks
using “background” scanning traffic, as is the case we focus
on in this study. To apply the proposed dynamic IP address
classification to an active probing environment to learn and
classify remote IP addresses, the issue can be more compli-
cated: either a “learning” phase is used ahead of time for
learning the appropriate scanning ports for classification, or
a fairly large of number of ports (or “vertical port scanning”)
is used in the classification process, and top ports that elicit
highest rates are included in the hypothesis testing. Due
to the intrusive nature of active probing, we do not con-
duct such experiments in this study. Evaluation and testing
of such “active-probe” based dynamic address classification
will be left to a future paper.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated methods for identifying dy-

namic address blocks within a large campus or enterprise
network. Using DNS name-based method, we first extracted
a number of static and dynamic address blocks to study their
traffic activities and we defined activity matrices to charac-



terize their incoming and outgoing traffic activity patterns.
Next, we focused on scanning traffic towards those blocks
and illustrated significant different patterns of responses to
scanning traffic between static and dynamic address blocks.
Based on our observations, we designed a classifier which
accurately identifies dynamic address blocks based on the
response model of two hypotheses tests. Finally, we dis-
cussed key issues for building a real-time classifier. Our
current work is to implement an online classifier to identify
dynamic address blocks on the Internet.
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