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ABSTRACT
In this paper, we investigate the suitability of embedding
Internet hosts into a Euclidean space given their pairwise
distances (as measured by round-trip time). Using the clas-
sical scaling and matrix perturbation theories, we first es-
tablish the (sum of the) magnitude of negative eigenvalues
of the (doubly-centered, squared) distance matrix as a mea-
sure of suitability of Euclidean embedding. We then show
that the distance matrix among Internet hosts contains neg-
ative eigenvalues of large magnitude, implying that embed-
ding the Internet hosts in a Euclidean space would incur
relatively large errors. Motivated by earlier studies, we
demonstrate that the inaccuracy of Euclidean embedding
is caused by a large degree of triangle inequality violation
(TIV) in the Internet distances, which leads to negative
eigenvalues of large magnitude. Moreover, we show that
the TIVs are likely to occur locally, hence, the distances
among these close-by hosts cannot be estimated accurately
using a global Euclidean embedding, in addition, increasing
the dimension of embedding does not reduce the embed-
ding errors. Based on these insights, we propose a new hy-
brid model for embedding the network nodes using only a
2-dimensional Euclidean coordinate system and small error
adjustment terms. We show that the accuracy of the pro-
posed embedding technique is as good as, if not better, than
that of a 7-dimensional Euclidean embedding.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer - Com-
munication Networks; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design

General Terms
Algorithms, Measurement, Performance
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1. INTRODUCTION
Estimating distance (e.g., as measured by round-trip time

or latency) between two hosts (referred as nodes hereafter)
on the Internet in an accurate and scalable manner is crucial
to many networked applications, especially to many emerg-
ing overlay and peer-to-peer applications. One promising
approach is the coordinate (or Euclidean embedding) based
network distance estimation because of its simplicity and
scalability. The basic idea is to embed the Internet nodes in
a Euclidean space with an appropriately chosen dimension
based on the pairwise distance matrix. The idea was first
proposed by Ng et al [1]. Their scheme, called GNP (Global
Network Positioning), employs the least square multi dimen-
sional scaling (MDS) technique to construct a low dimen-
sional Euclidean coordinate system, and approximate the
network distance between any two nodes by the Euclidean
distance between their respective coordinates. To improve
the scalability of GNP, [2] and [3] propose more efficient
coordinate computation schemes using the principal com-
ponent analysis (PCA). Both schemes are in a sense cen-
tralized. Methods for distributed construction of Euclidean
coordinate systems have been developed in [4, 5].

While many efforts have focused on improving the accu-
racy and usability of the coordinate based distance estima-
tion systems, studies have demonstrated the potential lim-
itations of such schemes. For example, [6] shows that the
amount of the triangle inequality violations (TIVs) among
the Internet hosts are non-negligible and illustrates how the
routing policy produces TIVs in the real Internet. They
conjecture that TIVs make Euclidean embedding of network
distances less accurate. [7] proposes new metrics such as rel-
ative rank loss to evaluate the performance and show that
such schemes tend to perform poorly under these new met-
rics. In addition, [8] claims that the coordinate based sys-
tems are in general inaccurate and incomplete, and therefore
proposes a light weight active measurement scheme for find-
ing the closest node and other related applications.

In spite of the aforementioned research on the coordi-
nate based network distance estimation schemes regardless
of whether they advocate or question the idea, no attempt
has been made to systematically understand structural prop-
erties of Euclidean embedding of Internet nodes based on
their pairwise distances: what contributes to the estimation
errors? Can such errors be reduced by increasing the di-
mensionality of embedding? More fundamentally, how do
we quantify the suitability of Euclidean embedding? We
believe that such a systematic understanding is crucial for
charting the future research directions in developing more



accurate, efficient and scalable network distance estimation
techniques. Our paper is a first attempt in reaching such
an understanding, and proposes a simple new hybrid model
that combines global Euclidean embedding with local non-
Euclidean error adjustment for more accurate and scalable
network distance estimation.

The contributions of our paper are summarized as follows.
First, by applying the classical scaling and matrix perturba-
tion theory, we establish the (sum of the) magnitude of neg-
ative eigenvalues of the (doubly-centered, squared) distance
matrix as a measure of suitability of Euclidean embedding.
In particular, existence of negative eigenvalues with large
magnitude indicates that the set of nodes cannot be embed-
ded well in a Euclidean space with small absolute errors.

Second, using data from real Internet measurement, we
show that the distance matrix of Internet nodes indeed con-
tains negative eigenvalues of large magnitude. Furthermore,
we establish a connection between the degree of triangle in-
equality violations (TIVs) in the Internet distances to the
magnitude of negative eigenvalues, and demonstrate that
the inaccuracy of Euclidean embedding is caused by a large
degree of TIVs in the network distances, which leads to neg-
ative eigenvalues of large magnitude.

Third, we show that a majority of TIVs occur among
nodes that are close-by, suggesting a strong local non-Euclidean
effect. By clustering nodes based on their distances, we find
that while the distances between the nodes in the different
clusters (the inter-cluster node distances) can be fairly well-
approximated by the Euclidean distance function, the intra-
cluster node distances are significantly more non-Euclidean,
as manifested by a much higher degree of TIVs and the
existence of negative eigenvalues with considerably larger
magnitude. In addition, increasing the dimensionality of
Euclidean embedding does not significantly improve its ac-
curacy, in particular, for intra-cluster node distances. Based
on these results we conclude that estimating network dis-
tances using coordinates of hosts embedded in a global Eu-
clidean space is rather inadequate for close-by nodes.

As the last (but not the least) contribution of our pa-
per, we develop a new hybrid model for embedding the net-
work nodes: in addition to a low dimensional Euclidean
embedding (which provides a good approximation to the
inter-cluster node distances), we introduce a locally deter-
mined (non-metric) adjustment term to account for the non-
Euclidean effect within the clusters. The proposed hybrid
model is mathematically proven to always reduce the esti-
mation errors in terms of stress (a standard metric for fitness
of embedding). In addition, this model can be used in con-
junction with any Euclidean embedding scheme.

The remainder of the paper is organized as follows. In
Section 2 we provide a mathematical formulation for em-
bedding nodes in a Euclidean space based on their distances,
and apply the classical scaling and matrix perturbation the-
ories to establish the magnitude of negative eigenvalues as
a measure for suitability of Euclidean embedding. In Sec-
tion 3, we analyze the suitability of Euclidean embedding of
network distances and investigate the relationship between
triangle inequality violations and the accuracy. We show the
clustering effects on the accuracy in section 4. We describe
the new hybrid model for the network distance mapping in
Section 5 and conclude the paper in Section 6.

2. EUCLIDEAN EMBEDDING AND
CLASSICAL SCALING

In this section we present a general formulation of the
problem of embedding a set of points (nodes) into a r-
dimensional Euclidean space given the pairwise distance be-
tween any two nodes. In particular, using results from clas-
sical scaling and matrix perturbation theories we establish
the (sum of the) magnitude of negative values of (an appro-
priately transformed) squared distance matrix of the nodes
as a measure for the suitability of Euclidean embedding.

2.1 Classical Scaling
Given only the (n × n, symmetric) distance matrix D =

[dij ] of a set of n points (nodes) (from some arbitrary space),
where dij is the distance1 between two points xi and xj ,
1 ≤ i, j ≤ n, we are interested in the following problem: can
we embed the n points {x1,x2, . . . ,xn} in an r-dimensional
space for some r ≥ 1 with reasonably good accuracy? To
address this question, we need to first determine what is the
appropriate dimension r to be used for embedding; given r
thus determined, we then need to map each point xi into
a point x̃i = (x̃i1, . . . , x̃ir) in the r-dimensional Euclidean
space to minimize the overall error of embedding with re-
spect to certain criterion of accuracy.

Before we address this problem, we first ask a more ba-
sic question: Suppose that the n points are actually from an
r-dimensional Euclidean space, given only their distance ma-
trix D = [dij ], is it possible to find out the original dimension
r and recover their original coordinates in the r-dimensional
space? Fortunately, this question is already answered by the
theory of classical scaling [9]. Let D(2) = [d2

ij ] be the matrix

of squared distances of the points. Define BD := − 1
2
JD(2)J ,

where J = I − n−111T , I is the unit matrix and 1 is a n-
dimensional column vector whose entries are all 1. J is called
a centering matrix, as multiplying J to a matrix produces
a matrix that has 0 mean columns or rows. Hence BD is a
doubly-centered version of D(2). A result from the classical
scaling theory gives us the following theorem.

Theorem 1. If a set of n points {x1,x2, . . . ,xn} are
from an r-dimensional Euclidean space. Then BD is semi-
definite with exactly r positive eigenvalues (and all other
eigenvalues are zero). Furthermore, let the eigen decompo-

sition of BD is given by BD = QΛQT = QΛ1/2(QΛ1/2)T ,
where Λ = [λi] is a diagonal matrix whose diagonal consists
of the eigenvalues of BD in decreasing order. Denote the di-
agonal matrix of the first r positive eigenvalues by Λ+, and
Q+ the first r columns of Q. Then the coordinates of the n

points are given by the n×r coordinate matrix Y = Q+Λ
1/2
+ .

In particular, Y is a translation and rotation of the original
coordinate matrix X of the n points.

Hence the above theorem shows that if n points are from
an Euclidean space, then we can determine precisely the
original dimension and recover their coordinates (up to a
translation and rotation). The contrapositive of the above
theorem states that if BD is not semi-definite, i.e., it has neg-
ative eigenvalues, then the n points are not originally from

1We assume that the distance function d(·, ·) satisfy
d(x, x) = 0 and d(x, y) = d(y, x) (symmetry), but may vio-
late the triangle inequality d(x, z) ≤ d(x, y) + d(y, z); hence
d may not be metric.
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Figure 1: Scree plots of the eigenvalues on data sets. Random points are generated in d-dimensional Euclidean
space. The noise is computed as dnoisexy = dxy + dxy × f , where f , the noise factor, is uniformly randomly
selected from a range of [0, p). p = 0.05 and p = 0.1 are used.

an Euclidean space. A natural question then arises: does the
negative eigenvalues of BD tell us how well a set of n points
can be embedded in a Euclidean space? In other words, can
they provide an appropriate measure for suitability of Eu-
clidean embedding? We formalize this question as follows.
Suppose the n points are from an r-dimensional Euclidean
space, but the actual distance d̃ij between two points xi

and xj is “distorted” slightly from their Euclidean distance
dij , e.g., due to measurement errors. Hence, intuitively if
the total error is small, we should be able to embed the n
points into an r-dimensional Euclidean space with small er-
rors. Using the matrix perturbation theory, we show that in
such a case the (doubly centered) squared distance matrix
must have small negative eigenvalues.

Formally, we assume that d̃2
ij = d2

ij + eij , where |eij | ≤

ε/n2 for some ε > 0. Hence D̃2 := [d̃2
ij ] = D(2) + E,

where E := [eij ]. A frequently used matrix norm is the

Frobenius norm, ||E||F :=
��

i

�
j |eij |2 ≤ ε. Then BD̃ :=

− 1
2
JD̃(2)J = BD + BE , where BE := − 1

2
JEJ . It can be

shown that ||BE ||F ≤ ε. For i = 1, 2, . . . , n, let λ̃i and
λi be the ith eigenvalue of BD̃ and BD respectively, where

λ̃1 ≥ · · · ≥ λ̃n and λ1 ≥ · · · ≥ λn. Then the Wiedlandt-
Hoffman Theorem [10] states that

�n
i=1(λ̃i−λi)

2 ≤ ||BE ||2F .
Since λi ≥ 0, we have

�

{i:λ̃i<0}

|λ̃i|
2≤
�

{i:λ̃i<0}

(−λ̃i + λi)
2 ≤

n�
i=1

(λ̃i − λi)
2 ≤ ||BE ||2F ≤ ε2.

Hence the sum of the squared absolute values of the negative
eigenvalues is bounded by the squared Frobenius norm of the
(doubly-centered) error matrix ||BE ||2F , which is the sum of
the (doubly-centered) squared errors. In particular, the ab-

solute value of any negative eigenvalue |λ̃i| is bounded by
||BE||F . Hence if the total error (as reflected by ||BE ||2F ) is

small and bounded by ε, then the negative eigenvalues of B̃D

are also small and their magnitude is bounded by ε. Hence
the magnitude of negative eigenvalues (and their sum) pro-

vides a measure of the suitability of Euclidean embedding:
if a set of n points can be well-approximated by a Euclidean
space with an appropriate dimension, then their associated
doubly-centered squared distance matrix only has negative
eigenvalues of small magnitude, if any. On the other hand,
the contrapositive of the above proposition leads to the fol-
lowing observation: if the doubly-centered squared distance
matrix has negative eigenvalues of large magnitude, then the
set of n points cannot be embedded into a Euclidean space
with a small total error (as measured by ||BE ||F ), hence
they are less amenable to Euclidean embedding.

More generally, when a set of n points are originally from
an Euclidean space, embedding them into an r-dimensional
Euclidean space would introduce some errors. Multidimen-
sional scaling (MDS) [9] is a generalization of classical scal-
ing for embedding a set of points into an r-dimensional (met-
ric) space (with not necessarily Euclidean distance function)
to minimize certain pre-specified error function, e.g., the
stress (1). The GNP method proposed in [1] uses MDS for
embedding Internet nodes in an r-dimensional Euclidean
space given the distance matrix to minimize the so-called
the overall relative error (see the next section). The dimen-
sion r is essentially determined by trial-and-error. In [2]
and [3] an more efficient (but somewhat less accurate) ap-
proach is proposed using Liptchiz embedding and principal
component analysis (PCA) or singular value decomposition
(SVD) of the distance matrix, where the dimension of the
embedding is the number of singular values with relative
large magnitude.

2.2 Illustration
We now generate some synthetic data to demonstrate how

classical scaling can precisely determine the original dimen-
sionality of data points that are from a Euclidean space.
First, we generate 360 random points in a unit hyper cube
with different dimensions and compute the corresponding
distance matrix for each dataset. Fig. 1(a) shows the scree
plot of the eigenvalues obtained using classical scaling. The
eigenvalues are normalized by the largest value (This will be



Data Set Nodes Date
King462 ([11]) 462 8/9/2004

King2305 ([12]) 2305 2004
PlanetLab ([13]) 148 9/30/2005

GNP ([14]) 19 May 2001

Table 1: The data sets used in our study. The num-
ber of nodes is chosen to make the matrix complete
and square.

the same for the rest of the paper). We see from Fig. 1(a)
that the eigenvalues vanish right after the dimensionality of
the underlying Euclidean space where the data points are
from, providing an unambiguous cut-off to uncover the orig-
inal dimensionality. We now illustrate what happens when
distances among data points are not precisely Euclidean
(e.g., due to measurement errors). We add noise to the
synthetically generated Euclidean datasets as follows: The
noise component in the data is d × f , where d is the origi-
nal Euclidean distance and f is a randomly selected number
from [0, p). We use p = 0.05 and p = 0.1 for the illustration
below. We observe in Fig. 1(b) that the first r eigenvalues
are positive, and are nearly the same as in the case with-
out noise, where r represents the actual dimension of the
dataset. Beyond these eigenvalues, we observe only small
negative eigenvalues. As the noise increases, the magnitudes
of negative eigenvalues increase slightly. It is clear that as
the data set deviates from Euclidean more, the magnitudes
of the negative eigenvalues become larger.

3. EUCLIDEAN EMBEDDING OF
NETWORK DISTANCES

In this section, we begin by examining the accuracy of
Euclidean embedding of network distances for a wide range
of datasets. We consider four different metrics for this er-
ror evaluation that we believe are useful for a variety of
delay sensitive applications. We apply eigenvalue analysis
to show that the (doubly-centered, squared) distance matri-
ces of the datasets contain negative eigenvalues of relatively
large magnitude. We then attribute existence of the negative
eigenvalues of relative large magnitude to the large amount
of triangle inequality violations existing in the datasets by
showing: i) embedding a subset of nodes without triangle
inequality violations in a Euclidean space produces higher
accuracy, and the associated distance matrix also contains
only negative eigenvalues of much smaller magnitude; ii) by
increasing the degree of TIVs in a subset of nodes of the same
size, the performance of Euclidean embedding degrades and
the magnitude of the negative eigenvalues also increases.

We use four different datasets which we refer to as King462,
King2305, PlanetLab and GNP, as listed in 1. King462 is
derived from the dataset used by Dabek et al. [11] after
removing the partial measurements to derive a 462 × 462
complete and square distance matrix among 462 hosts from
the original 2000 DNS server measurements. Using the same
refinement over the dataset used in [12], we derive King2305,
which is a 2305×2305 complete and square distance matrix.
PlanetLab is derived from the distances measured among
the Planetlab nodes on Sep 30th 2005 [13]. We chose the
minimum of the 96 measurement (one measurement per 15
minutes) data points for each measurement between node
pairs. After removing the hosts that have missing distance

information, we obtain a 148 × 148 distance matrix among
148 nodes. GNP dataset is obtained from [14] that contains
a 19×19 distance matrix. Even though the number of hosts
is small in this dataset, we have chosen this dataset in order
to compare with the results in other papers.

3.1 Performance of Euclidean Embedding
We consider four performance metrics, namely, stress, (cu-

mulative) relative errors, relative rank loss (RRL), and clos-
est neighbor loss (CNL) that have been introduced across
various studies in the literature. We compute the embed-
ding errors for these four metrics for the datasets mentioned
earlier. We consider two Euclidean embedding, namely, Vir-
tual Landmark and GNP that are suggested in the literature.
The four metrics are stress, relative error, relative rank loss,
and closest neighbor loss. Stress and relative errors are used
for many Euclidean embedding literatures. Relative rank
loss and closest neighbor loss have been recently introduced
in [7], where they focus on finding nearest neighbor. The
four metrics are defined as follows :

• Stress: This is a standard metric to measure the overall
fitness of embedding, originally known as Stress-1 [9]:

Stress-1 = σ1 = �
����x,y(dx,y − d̂xy)2�

x,y d2
xy

, (1)

where dxy is the actual distance between x and y, and

d̂xy is the estimated one.

• Relative error: This metric is introduced in [1] that is

defined as follows:
|dxy−d̂xy|

min(dxy,d̂xy)
. Note that the denom-

inator is the minimum of the actual distance and the
estimated one2.

• Relative rank loss (RRL): RRL denotes the fraction
of pair of destinations for which their relative distance
ordering, i.e., rank in the embedded space with respect
to a source has changed compared to the actual dis-
tance measurement. For example, for a given source
node, we take a pair of destinations and check which
one is closer to the source in the real distances and the
estimated distance. If the closest one is different, then
the relative rank is defined to be lost. We compute
the fraction of such relative rank losses for each source
and compute the average among all the sources to get
the overall RRL for the embedding.

• Closest neighbor loss (CNL): For each source, we find
the closest node in the real distances and the esti-
mated distances. If the two nodes are different, the
closest neighbor is lost. We compute the fraction of
such losses for each source and compute the average
for overall CNL. However, unlike the original CNL in
[7], we introduce δ, which is a sort of margin for CNL.
So if the closest node in the estimated distances is
within δ ms, we consider them as non-loss. The origi-
nal CNL is when δ = 0. We expect that as δ increases,
the CNL decreases.

2In some literatures, instead of min(dxy, d̂xy), dxy is used.
This usually produces smaller relative errors.
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Figure 2: Top (a): Stress, Bottom (b) : Relative
Error. Performance Embedding. The number of
dimensions is 7. Only the results from GNP method
are shown for the relative error.

Following the results in [1, 2, 3], we choose 7 as the di-
mension of Euclidean embedding for both GNP and Virtual
Landmark (using the first 7 largest singular values). Since
there is no embedding that is best for all the cases, we try
different types of embedding. Fig. 2(a) shows the stress of
embedding the network distances in a 7-dim Euclidean space
using the GNP and Virtual Landmark methods. In GNP
and VL, we use 20 landmarks randomly selected from the
data set. In VL-All, we use all the nodes as landmarks. We
see the overall stress is 0.2 to 0.5 except King2305 dataset,
which indicates that on the average the estimations deviate
from the original distances from 20 % to 50%. In King2305
data set, there are may links which has more than 90 sec-
onds RTT, which might be an outlier, but we just use it as it
is. It is clear from (1) that the metric stress can be affected
by outliers. Fig. 2(b) shows the cumulative distribution of
relative errors obtained from GNP method. For about 20%
to 50 % of the estimations, the relative errors are more than
0.5. In short, both results show a non-negligible amount of
estimation errors. Also as can be seen in Fig. 2(a) and 2(b)
the stress and the relative errors are correlated.

Fig. 3 shows the cumulative distribution of the individual
relative rank losses. Most of them are below 0.3, which is
relatively good. However, the performance in CNL is quite
bad as can be seen in Fig. 4. The maximum CNL is almost
1 in some cases, which means that most of the nodes could
not find the closest node based on the distance estimation.
Even when δ increases, CNL does not increase much.
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3.2 Analyzing Suitability of Euclidean
Embedding

To understand the possible sources of Euclidean embed-
ding of network distances, in this section we perform eigen-
value analysis of the distance matrices and investigate how
triangle inequality violations (TIVs) affect the suitability of
Euclidean embedding and accuracy of the embedding.
Eigenvalue Analysis. First, we perform eigenvalue anal-
ysis of the doubly-centered, squared distance matrix BD =
−JD(2)J . Fig. 5 shows the scree plot of the resulting eigen-
values, normalized by the eigenvalue of the largest magni-
tude |λ1|, in decreasing order in the magnitude of the eigen-
values. We see that each of the datasets has one or more
negative eigenvalues of relatively large magnitude that are
at least about 0.2% of |λ1|, and the negative eigenvalue of
largest magnitude is among the second and fourth largest
in terms of magnitude). This suggests that the network dis-
tances are fairly strong “non-Euclidean”, and the nodes are
somewhat less suitable for Euclidean embedding. Hence it
is expected that embedding the nodes in a Euclidean would
produce considerable amount of errors.
TIV Analysis. Motivated by earlier studies (e.g., [6])
which shows that there is a significant amount of TIVs in the
Internet distance measurement, and attributes such TIVs
to routing policies. Here we investigate how the amount of
TIVs in the datasets affect the suitability and accuracy of
Euclidean embedding of network distances. In particular, we
establish a strong correlation between the amount of TIVs
and the magnitude of negative eigenvalues of the associated
distance matrix. First we analyze the amount of TIVs in the
four data sets of real Internet distances. For each data set,



Data Set GNP King2305 King462 Planetlab
fraction 0.116 0.233 0.118 0.131

Table 2: The fraction of TIVs over all triples of
nodes
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Figure 5: Scree plot of the eigenvalues on network
distance measurement data set.

we take a triple of nodes and check whether they violate tri-
angle inequality. We then compute the fraction of such TIVs
over all possible triples. Table 2 shows that the King2305
data set (where the fraction of TIVs in the King2305 data
set is about 0.23, while for the other three datasets, it is
around 0.12. Hence the triangle inequality violations are
fairly prevalent in the data sets.

To investigate how the amount of TIVs affect the suitabil-
ity and accuracy of Euclidean embedding, in particular, its
impact on the magnitude of negative eigenvalues, we start
with a subset of nodes without any triangle inequality vio-
lation (we refer to such a subset of nodes as TIV-free set).
Ideally we would like this subset to be as large as possible
– the maximal TIV-free (sub)set. Unfortunately, given the
distance matrix of a node set, finding the maximal TIV-
free subset is NP-hard, as is shown in the following theorem
(proof of which is described in the appendix).

Theorem 2. The maximal TIV-free set problem is NP-
complete.

Hence we have to resort heuristics to find a relatively large
TIV-free sets. Here we describe three heuristic algorithms.
The basic algorithm (referred to as Algo 0) is to randomly
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choose k nodes from a given set of n nodes and check whether
any three nodes of these randomly selected k nodes violates
the triangle inequality. If the triangle inequality is violated,
the process is repeated again by randomly selecting another
set of k nodes. If we find a TIV-free set of size k, we increase
k by one and try again to attempt to find a larger set. Oth-
erwise the algorithm terminates after a pre-specified number
of failed tries, and returns the TIV-free set of size k−1. The
second heuristic algorithm (Algo 1)is as follows. We start
with a TIV-free set with two randomly selected nodes, and
a (remaining) node set of n − 2 nodes. We then select a
random node and check to see whether it violates the tri-
angle inequality with the existing TIV-free set. If yes, this
node is removed from the node set. Otherwise it is added
to the TIV-free set and removed from the remaining node
set. The process is repeated until the remaining node set
becomes empty. The third heuristic algorithm (Algo 2) is
slightly more sophisticated, and works in a similar fashion
as Algo 1, except that we do not choose nodes randomly for
consideration. We start with an initial TIV-free set A of two
nodes, where the two nodes are chosen such that the pair of
nodes has the least number of TIVs with nodes in the re-
maining node set C. Given this pair of nodes, we remove all
nodes in the remaining node set C that violate the triangle
inequality with this pair of nodes. For each node c in C, we
compute the number of nodes in C that the violates triangle
inequality with c and any node in A.

We add the node c that has the smallest such number,
add it to A and remove it from C. We then purge all the
nodes that violate the triangle inequality with c and a node
in A. We repeat the above process until C becomes empty.

The size of largest TIV-free sets found by the three heuris-
tic algorithms is shown in Fig. 6. For the three datasets con-
sidered, Algo 0 only finds a TIV-free set of 10 nodes. Algo
2 finds the largest TIV-free sets for the King462 and King
2305 datasets, while Algo 1 finds the largest TIV-free set
for the Planetlab dataset. For the following analysis, we use
the largest TIV-free set found for each dataset. Fig. 7(a)
shows the scree plot of the eigenvalues for the associated
(doubly-centered, squared) distance matrix of the TIV-free
node sets. We see that they all have only a small number of
negative eigenvalues and the magnitudes of all the negative
eigenvalues are also in general fairly small. Comparing to
Fig. 5, we can see the reduction in both the number and
magnitude of negative eigenvalues. Consequently, compar-
ing the results in Fig. 7(b) with those in Fig. 2(b), we see
that the Euclidean embedding of the TIV-free sets has a
much better overall accuracy.
Correlation between Negative Eigenvalues and
Amount of TIVs. Next, we show how the amount of TIVs
in a dataset contributes the magnitude of negative eigenval-
ues, thereby the suitability and accuracy of Euclidean em-
bedding. We use the King2305 dataset as an example. The
largest TIV-free set we found has 81 nodes. We fix the size
of the node sets, and randomly select six other node sets
with exactly 81 nodes, but with varying amount of TIVs.
The scree plots of the eigenvalues for the six node sets are
shown in Fig. 8(a), and the cumulative relative error dis-
tributions of the corresponding Euclidean embedding are
shown in Fig. 8(b). We see that with the increasing amount
of TIVs, both the magnitude and number of negative eigen-
values increase; and not surprising, the overall accuracy of
the Euclidean embedding also degrades. In fact, we can
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Figure 7: Embedding of TIV-free node sets. GNP method with 7 dimension is used. 20 landmarks are
randomly selected among the set and the relative error is computed over all the nodes.

mathematically establish a relation between the amount of
TIVs and the sum of squared estimation errors as follows.

Lemma 1. If the distances a, b, c among 3 nodes violate
the triangle inequality, i.e., c > a + b, the minimum squared
estimation error of any Euclidean embedding of the 3 nodes

is (c−a−b)2

3
.

Theorem 3. The sum of squared estimation errors of
any Euclidean embedding of n nodes is larger than or equal
to 1

3(n−2)

�
t∈V (tc − ta − tb)

2, where V is the set of triples

that violates triangle inequality, ta, tb, and tc are the 3 dis-
tances of a triple v, and tc > ta + tb.

The proofs are delegated to the appendix. Theorem 3
states that as the amount of TIVs increases, the sum of
the squared estimation errors also increases. It should be
noted that this argument can be directly applied to any
metric space not only to the Euclidean space. In addition,
a similar result can be established for the sum of squared
relative errors, the details of which is omitted here.

4. LOCAL NON-EUCLIDEAN EFFECT
Our analysis in the previous section illustrated that dis-

tance matrix of Internet hosts contains large negative eigen-
values and large number of TIVs. In addition, we established
a correlation between the degree of TIVs in the network
distance and the magnitude of negative eigen values. How-
ever, we observe that the magnitude of embedding errors
vary across the four performance metrics we have consid-
ered. In this section, we dissect the dataset further to find
out whether clustering of Internet hosts contribute to the er-
rors in the embedding, which nodes are likely to contribute
to the higher degree of TIVs and whether increasing the
dimension of the embedding helps improve the embedding
performance.

4.1 Clustering Effect
The hosts in the Internet are clustered due to many fac-

tors such as geographical location and ASes. This cluster-
ing causes many hosts to have short distances among them-
selves. To investigate the effect of clusters on accuracy, we

first look at the existence of clusters in the network dis-
tances. To identify clusters within the network distances,
we apply the spectral clustering algorithm [15] to King462
data set with the outliers3 removed. In this experiment, 28
nodes out of 462 are removed. The algorithm4 obtains 4
clusters for the King462 dataset. We use a gray scale plot to
show the existence of clusters in the King462 dataset with
outliers removed.

In Fig. 9, the vertical axis represents the source nodes and
the horizontal axis represents the target nodes (both are
grouped based on the clusters they belong to). The cross
point between the vertical and horizontal axis represents
the distance between the corresponding two nodes. The dis-
tance is represented in a gray scale: White color represents
distance 0 and black color represents the distance larger than
the 95th percentile distance. The interval between 0 and the
95th percentile distance is divided into 10 gray scales (with a
total of 11 gray scales), with increasing darkness from white
to black (beyond 95th percentile distance). We can clearly
see that there are about 4 clusters. The table in Fig. 9 shows
the median distances between nodes within and across clus-
ters. As can be expected, the intra-cluster median distances
are much smaller than the inter-cluster median distances.

To illustrate the characteristics of the individual clusters,
in Fig. 10, we show the scree plot of the eigenvalues of
classical scaling on the 4 clusters of the King462 data set.
The magnitudes of the negative eigenvalues are larger than
those of the whole data sets (compared to Fig. 5). The
“non-Euclidean-ness” amplifies within each cluster. It sug-
gests that the intra-cluster distances are much harder to
embed into the Euclidean space. This can be easily ob-
served by looking at the relative errors of the embedding.
Fig. 11 shows the relative errors in a gray scale matrix for
the King462 dataset, where the Virtual Landmark method
is used for the embedding. The pure black color represents
the relative error of 1.0 or larger, and 10 gray scales are used

3Outliers are defined as the nodes of which distance to 8th
nearest nodes are larger than a threshold.
4The algorithm takes as input a parameter K, the number
of clusters, and produces up to K as a result. We have
experimented with K = 3 to 7, and the algorithm in general
produces 3-4 “relatively big” clusters for the three datasets.
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Figure 8: The change of eigenvalues and relative errors over the fraction of TIVs.
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c1 c2 c3 c4
c1 62.099 154.287 254.469 212.538
c2 154.287 60.681 376.146 321.508
c3 254.469 376.146 61.194 238.938
c4 212.538 321.508 238.938 61.950

Figure 9: Distances between each pair of nodes in
King462 data set after removing outliers. White
represents distance 0 and black represents 95th per-
centile or higher distances. Median distances (in
ms) among the nodes of the intra and inter clusters
are shown in the table.

for relative errors between 0 and 1. We see that the relative
errors of the intra-cluster estimations are larger than those
of inter-cluster estimations.

We next examine which nodes are more likely to con-
tribute towards the TIVs. As we shall illustrate next, the
high errors in the intra cluster distance estimation and the
large magnitudes of the negative eigenvalues can be ex-
plained by the varied number of TIVs over the different
distances. Intuitively, a TIV is likely to occur if distance
between two nodes is very short or very large compared to
the other two distances for a given set of three nodes. Us-
ing this intuition we proceed with our data analysis as fol-
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Figure 10: Scree plot of the eigenvalues of CS on the
4 clusters of the King462 data set after removing 28
outliers : Cl 1 (261 nodes), Cl 2 (92 nodes), Cl 3 (22
nodes), and Cl 4 (59 nodes).
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Figure 11: Relative errors between each pair of
nodes in King462 data set without outliers. White
represents relative error 0 and black represents rel-
ative error 1 or larger. Virtual Landmark method
with 7 dimension is used.
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lows: We divide the distances into 6 intervals : [0ms, 25ms),
[25ms, 50ms), [50ms, 100ms), [100ms, 200ms), [200ms, 400ms),
and [400ms,∞). We group all the pairs of nodes by their
distance intervals. Then, for each pair of nodes, we com-
pute the fraction of TIVs in conjunction with the rest of the
nodes, i.e. we count how many nodes violate triangle in-
equality with the given pair of nodes. Finally, we compute
the average of the fractions of all the pairs in each interval.
Fig. 12 shows the average fraction of TIVs in each distance
interval. We observe that higher fractions of TIVs occur
in the intervals [0, 25ms) and [400,∞) compared to other
intervals. Since the fractions of pairs in [400,∞) are quite
small in all the data set and are not much interest to any ap-
plication, reducing the errors in short distance estimations
is much more crucial for overall performance.

The above analysis illustrated that the distances among
the inter-cluster nodes are more likely to be better approx-
imated by their Euclidean coordinates, whereas Euclidean
embedding of nodes within a cluster would poorly estimate
the distance. This seems to suggest that there is much
stronger local “non-Euclidean effect” on the network dis-
tances.

4.2 Effect of Increasing the Embedding
Dimension

The results in the previous subsection suggests that to
improve the overall performance, the accuracy of the intra-
cluster embedding should be improved. We examine whether
increasing the dimension of the embedding would help im-
prove the embedding accuracy. Fig. 13 shows the cumulative
distributions of relative errors of the King462 data set em-
bedded using the Virtual Landmark method over various
dimensions. We see that there is a significant improvement
in relative errors when we increase the embedding dimension
from 2 to 3. However, in general, increasing the embedding
dimension beyond 3 dimensions does not yield considerable
gain. The distributions are very similar from d=3 to d=7.

Next, we look at the effect of increasing dimensions on
the intra- vs. inter-cluster node distance estimation. We
use the embedding of the King462 dataset using the Virtual
Landmark method as an example. For each node, we com-
pute the fraction of good estimates (when the relative error
is less than a threshold p, we consider the estimation good.
We use p = 0.15.) to other nodes within the same cluster as
well as to other nodes in different clusters. We then compute
the average fraction of good estimates for each combination
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Figure 13: Cumulative distributions of relative error
over the number of dimensions. After 3 dimensions,
the performance does not decrease much.

of cluster pairs. The results are shown in Fig. 14, where the
plot “cx-cy” is the average fraction of good estimates be-
tween nodes cluster x and nodes in cluster y for the Virtual
Landmark embedding of varying dimensions.

Fig. 14 illustrates and confirms several important obser-
vations. First, regardless of the embedding dimension, the
inter-cluster node distance estimation (the top six curves)
has far better performance than intra-cluster node distance
estimation (the bottom four, c1-c1, c2-c2, c3-c3 and c4-c4).
Second, for inter-cluster node distance estimation, increas-
ing d beyond 3 dimensions does not improve the perfor-
mance, in fact, often degrades the performance. Note that
cluster 1 (275 nodes) and cluster 3 (102 nodes) are large clus-
ters. For them, increasing the embedding dimension yields
somewhat better performance, indicating that higher dimen-
sions are needed to embed the nodes in the clusters.

These results clearly illustrate the strong local “non-Euclidean”
effect of the datasets, and demonstrate that simply increas-
ing the dimension of embedding is not the right approach to
improve the performance of network embedding methods (in
fact a dimension of 3 or 4 seems to suffice). We also have
investigated whether using a non-Euclidean distance met-
ric can improve the overall performance of network distance
embedding. For this purpose, we have used the Minkowski
p-norm, ||x||p = (

�n
i=1 |xi|

p)1/p, where p can be fractional.
However, this does not improve the performance either. In
general, since the TIVs do not disappear no matter how to
embed the nodes into the Euclidean space (more generally
the metric space where triangle inequality holds), it is hard
to improve the performance for the nodes where many TIVs
exist. The theorem 3 clearly states this.

5. A HYBRID MODEL FOR LOCAL
ADJUSTMENT

The results from previous sections show that the existence
of TIVs highly affects the accuracy of the Euclidean embed-
ding. Furthermore, the network distances exhibit strong
local non-Euclidean effect. In particular, Euclidean embed-
ding is fairly good at estimating network distances between
nodes that are far-away (in different clusters), whereas it
is rather poor at estimating local network distances (dis-
tance between nodes within a cluster). These observations
inspire us to develop a hybrid embedding model which incor-
porates a (non-Euclidean) localized adjustment term (LAT)
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Figure 14: The average fraction of good estimations
within/between clusters. Virtual Landmark on the
King462 dataset

into the distance estimation. We show that using only a
2-dimensional Euclidean embedding plus the localized ad-
justment terms, we can obtain better performance than a
pure Euclidean embedding with 7 dimensions.

5.1 The Hybrid Model
The basic ideas behind our hybrid model are as follows:

we first embed the network distances in a Euclidean space of
d dimensions, and then for each node we compute an adjust-
ment term to account for the (local) non-Euclidean effect.
Hence in our hybrid model, each node x has a d-dim Eu-
clidean coordinate, (x1, x2, . . . , xd), and a (non-Euclidean)
adjustment ex: we use (x1, x2, . . . , xd; ex) to denote the to-
tal “coordinate” of node x. The distance dxy between two

nodes x and y is then estimated by d̂xy := dE
x,y + ex + ey,

where dE
x,y =

��d
k=1(xk − yk)2 is the Euclidean distance

between x and y in the embedded d-dim Euclidean space.
ex is similar to the height vector in Vivaldi system [4], but
actually it is quite different as can be discussed later in this
section. The key question in this model is how to define
and determine ex for each node x. Ideally, we would like
ex to account for the “non-Euclidean” effect on the distance
estimation errors to nodes within its own cluster. However,
this requires us to know which cluster node x is in as well
as the other nodes in its cluster. For simplicity, we derive
ex using all nodes as follows. We first compute εx, which
minimizes the error function E(x) =

�
y(dxy − (dE

xy + εx))2,
where dxy is the actual distance between x and y. It can be
shown that the optimal εx is given by the average error in
estimation:

εx =

�
y(dxy − dE

xy)

n
. (2)

We then set ex to the half of εx, namely, ex = εx/2. In other

words, d̂xy can be re-written as dE
x,y + (εx+εx)

2
. In short, we

adjust the Euclidean estimation by the average of the two
error terms of x and y. We have the following theorem that
establishes the advantage of the hybrid model. The sketchy
of the proof is in the appendix.

Theorem 4. The hybrid model using a d-dim Euclidean
space and the adjustment term defined above reduces the
squared stress of a pure d-dim Euclidean embedding by

4n
�

x e2
x + 2n2Var(ex)�

x,y d2
xy

≥ 0,

where Var(ex) =
�

x e2
x/n − ��x ex

n �2.
Hence the larger the individual adjustment term, |ex| (thus
the average estimation error for each node x using the pure
Euclidean embedding), the more performance gain the hy-
brid model attains. It should be noted that ex can be posi-
tive or negative5.

In (2), ex is determined by the measurement to all the
other nodes in the system. In practice, however, this is
not feasible nor scalable. Instead, we compute ẽx based
on sampled measurements to a small number of randomly
selected nodes. Let S denote the set of randomly sampled
nodes. Then

ẽx =

�
y∈S(dxy − dE

xy)

2|S|
, (3)

Hence in practice the hybrid model works as follows: a)
A number of landmarks are pre-selected and perform dis-
tance measurements among themselves to obtain a distance
matrix. Using either Virtual Landmark or GNP a d-dim Eu-
clidean embedding of the landmarks is obtained and their
coordinates are determined. b) Each node x measures their
distance to the landmarks and computes its d-dim Euclidean
coordinate (x1, x2, . . . , xd); it then measures its distance to
a small number of randomly selected nodes, and computes
ẽx using eq. (3).

Note that in a sense, the adjustment term is similar to the
“height vector” introduced in Vivaldi [4]. However, there
are several key differences. First of all, the computation
of the local adjustment term is very simple, and does not
depend on the adjustment term of other nodes. Hence it
does not require any iterative process to stabilize the ad-
justment term. In contrast, in Vivaldi, partly due to its
distributed nature, a small change in the height vector of a
node would affect the height vectors of the other nodes, and
requires an iterative process to stabilize the height vectors
of all nodes. Second, the local adjustment terms provably
improve the performance of network distance embedding,
as shown in the above theorem. Another good feature of
the local adjustment term is that it can be used with any
other schemes, not just the coordinate based schemes. As
long as dE

xy is the estimated distance based on the original
scheme, the adjustment term can be computed as described
above. In this sense, LAT is an option that can be used in
conjunction with other schemes rather than a totally new
scheme. Note that LAT can be used even with Vivaldi.

5.2 Evaluation
We evaluate the performance gain obtained by using the

localized adjustment term (LAT) option in network distance
embedding. For this purpose, we compare the stress of the
Virtual Landmark method without LAT and the Virtual
Landmark method with LAT, where the local adjustment
term is computed using all the nodes. We vary the num-
ber of dimensions from 2 to 7. As can be seen in Fig. 15,
the use of adjustment term (keys with LAT) reduces the
stress significantly compared to the VL-All without LAT.
In particular, when the original Euclidean embedding has
high stress( large error), the reduction of stress is signifi-
cant, which is expected from Theorem 4. In fact, increasing

5It is possible that the estimated distance is negative due
to negative LAT. In this case, we use the estimation of the
Euclidean part as the estimated distance.
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Figure 16: Cumulative distribution of the relative
errors with different method on King462 data set.

the dimensionality of the Euclidean space does not help very
much; a lower dimension Euclidean embedding plus the lo-
cal adjustment terms is sufficient to improve the accuracy
of the embedding significantly.

Next, we evaluate the performance of LAT using only a
small number of randomly selected nodes as in (3); we call
this option “SLAT (Sampled LAT)”. Fig. 15 shows the stress
of embedding using SLAT (keys with SLAT) over different
number of dimensions, where the adjustment term is com-
puted using the measurement to 10 randomly selected nodes.
We see that the performance between LAT and SLAT are
very close. This is quite expected because the average of a
randomly sampled set is an unbiased estimation of the aver-
age of the entire set. This result indicates that the adjust-
ment term can actually be computed quickly with a small
number of additional measurements.

In addition to the improved overall stress, the local adjust-
ment terms also improve the relative errors. As an example,
Fig. 16 compares the cumulative distribution of the rela-
tive errors of the pure Virtual Landmark with 7 dimensions
(denoted as VL-All) with that using the same methods with
only 2 dimensions plus the SLAT (denoted as SLAT (2D+1))
and 7 dimensions plus the SLAT (denoted as SLAT (7D+1))
for the King462 dataset 6. The SLAT (2D+1) attains bet-
ter performance than that of pure Virtual Landmark with
7 dimensions. For example, 90 percentile relative error of

6The Euclidean coordinates of the SLAT (2D+1) are the
first 2 coordinates of the Virtual Landmark 7 dimension em-
bedding.

SLAT (2D+1) is less than 0.6, but that of pure VL-All is
larger than 1.0. The SLAT (2D + 1) is even better than
SLAT (7D + 1), where all the 7 dimensions of the Virtual
Landmark embedding is used for SLAT. This suggests that
adding an adjustment term can perform better than adding
additional dimensions. We have looked at the result more
carefully and have seen that the performance gain comes
largely from improved distance estimation for nodes within
the same cluster.

6. CONCLUSION
This paper investigates the suitability of the Euclidean

embedding of the network distances. We show that based
on matrix perturbation theory, the existence of the large
negative eigenvalues in classical scaling indicate that the
data set cannot be embedded into the Euclidean space with-
out considerable errors. By looking at the eigenvalues and
the amount of TIVs, we show that network distances do
not naturally arise from the Euclidean space. Furthermore,
we show that the intra-cluster distances tend to have more
TIVs, which shows strong local non-Euclidean effect.

Based on these insights, we have proposed and devel-
oped a simple hybrid model that incorporates a localized
(non-Euclidean) adjustment term for each node on top of a
low-dimensional Euclidean coordinate system. Our hybrid
model preserves the advantages of the Euclidean coordinate
systems, while improving their efficacy and overheads (by
using coordinates with lower dimensions). This model is
proven to reduce the estimation errors in terms of stress. In
addition, our model can be incorporated into any embedding
system (not necessarily Euclidean embedding).
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APPENDIX

A. PROOFS

Proof of Theorem 2 Verifying whether there exist a maximal
TIV-free set of size k among a set of nodes with a distance matrix
can be done in polynomial time by enumerating all set of size k
and checking the TIVs in a non-deterministic machine. Hence
this problem is NP .

Now we prove that the problem is NP-hard. We prove NP-hard
by transforming CLIQUE (a problem to find the maximal clique
in a graph G, which is known to be NP-complete in Karp[1972]
of [16]), to the maximal TIV-free set problem.

Let G be a connected undirected graph with n > 2 nodes. We
assume that the size of maximal clique of G is k > 2. When
k = 2, it is trivial case such that any pair of vertices with edges
is a maximal clique. We construct a distance matrix D = (dij)
among the set of vertices of G as follows, where dij will be the
defined distance between vertices i and j. For each vertex i, we set
dii = 0. For each edge eij between vertices i and j, we set dij = 1
and dji = 1. Note that for any triangle in G, the corresponding
distances in D do not violate triangle inequality. For the pair of
vertices i and j that does not have an edge between them in G,
we set dij = undefined. Now, we define all the undefined dij as
follows. For an undefined dij , we compute c = maxk(dik + dkj)
for all k such that dik and dkj are already defined. If no such
c can be computed because dik and dkj are undefined for all k,
we set c = 0. Then, we set dij = dji = c + 1. We define the
undefined dij ’s until all dij is defined. This transformation takes

polynomial time, O(n3), because there are n2 entries in D and
for each entry O(n) computation is required.

It can be easily shown that that a triple of nodes (i, j, k) in G

forms a triangle if and only if i, j, and k do not have triangle

inequality violations with dij , dik, and djk in D (we omit the

details for the sake of space). This means that the maximal TIV-

free set whose distance are defined as D is the maximal clique in

G. We conclude that maximal TIV-free set problem is NP-hard.

Since maximal TIV-free set problem is NP and NP-hard, it is

NP-complete.

Proof of Lemma 1 Note that c > a + b. Let â, b̂, and ĉ be
the distances among the 3 nodes after the Euclidean embedding.
Then the squared estimation error e is

e = (a − â)2 + (b − b̂)2 + (c − ĉ)2 (4)

Suppose |a− â|+ |b− b̂|+ |c− ĉ| = k. Then, e ≥ ( k
3
)2 +( k

3
)2 +

( k
3
)2 = k2

3
, where

|a − â| =
k

3
, |b − b̂| =

k

3
, |c − ĉ| =

k

3
(5)

The sum of squared error e is minimized when k is minimized.
The range of k is determined by the triangle inequality constraints

among â, b̂, and ĉ. In other words, it should satisfy

â + b̂ ≥ ĉ, â + ĉ ≥ b̂, b̂ + ĉ ≥ â (6)

Based on (5), (6), and (c > a + b), we have the lower bound of

k ≥ (c − a − b), when â = a + k
3
, b̂ = b + k

3
, and ĉ = c − k

3
. So

the squared estimation error e ≥
(c−a−b)2

3
.

Proof of Theorem 3 Let E be the sum of squared error

of n nodes. E = �i(d̂i − di)
2, where di is a distance be-

tween a pair of nodes (called i) and d̂i is the embedded dis-

tance of the pair i. It should be noted that there are n(n − 1)/2

pairs. Since there are n(n − 1)(n − 2)/6 triples among n nodes,

E can be rewritten by the triples of nodes as follows. E =
1

n−2
�t∈T �(t̂a − ta)2 + (t̂b − tb)

2 + (t̂c − tc)2�, where T is the

set of triples and ta, tb, and tc are the three distances of a triple

t, and t̂a, t̂b, and t̂c are the corresponding embedded distances.

E should be larger than the sum of squared errors among the

the triples of TIV and embedding each triple independently has

smaller errors than embedding all the node at the same time,

E ≥ 1
3(n−2)

�t∈V (tc − ta − tb)
2 based on Lemma 1, where V is

the set of triples with TIVs.

Proof of Theorem 4 We just describe a sketchy of the proof.
Let s1 be the stress of using the pure Euclidean based scheme.
Let s2 be the stress of using the pure Euclidean based scheme
with the adjustment term.

s2
1 =

�x,y(dxy − dE
xy)2

�xy d2
xy

(7)

s2
2 =

�x,y(dxy − dE
xy − ex − ey)2

�x,y d2
xy

(8)

Since the denominators are the same, we compute
(�x,y d2

xy)(s2
1 − s2

2) to compute s2
1 − s2

2. Using (2) and some

reformatting the formula, the final result can be easily obtained.


