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Abstract—Despite the rapid growth in cellular data traffic,
we know very little about the (operational) cellular data service
network (CDSN) infrastructure. A key step in the process of
developing any such understanding is to first understand the
locations and distribution of the basestations in the CDSN in-
frastructure that serve as physical access points for end users for
communicating with the underlying network. Such knowledgenot
only can provide critical insight into the the CDSN infrastructure,
but can also guide the development of innovative (e.g. location-
aware) services and applications. In this paper we propose a
novel approach for mapping the CDSN basestation infrastructure
via (explicit) user geo-intent. The intuition behind the proposed
approach is to exploit specific geo-locations (i.e. geo-intent)
contained in user queries to location-based services, and correlate
them with basestation id’s to geo-map the CDSN infrastructure.
To investigate the validity of our approach, we employ data
(RADIUS/RADA data sessions and application sessions) collected
at the core IP network inside a CDSN. We develop heuristics
for identifying user geo-intent and for geo-mapping the CDSN
infrastructure — in particular, the basestations — and evaluate
their efficacy using a subset of basestations withground-truth
GPS locations.

I. I NTRODUCTION

With wide adoption of smart phones and other mobile
devices, there has been an unprecedented rise in services that
rely on the locations of users (e.g. weather, maps,locate-me).
Despite this tremendous growth, we know little, for example,
about the topology and geographical distribution of the cel-
lular network substrate (basestations); shrouded in secrecy by
cellular service providers (CSP) for security reasons.

An ecosystem of services thatactively collect information
about the physical location of cellular substrate (basestations)
and Wi-Fi hotspots [2], [4] already exists. Often, this is
accomplished via “war-driving” (dedicated users) the entire
region of interest and collecting geo-spatial data via a GPS-
enabled smartphone, thereby associating the basestationswith
the geo-location of the “war-driving” user. Such an approach
is both expensive and prone to the frequent churn in infrastruc-
ture - coverage expansion, mergers-and-acquisitions of CSPs
etc. Our aim, amongst others, is to provide a cost effective
(passive) alternative to such a “war-driving” approach.

In this paper we propose and explore a novel approach to
map the CDSN basestation infrastructure via (explicit) user
geo-intent. By geo-intent, we mean (explicit) geo-location
information specified by users while submitting queries to
certain services (e.g. weather or map services), in which
they explicitly seek information regarding a specific location.
Such geo-intent may be associated with the target of a user

query, or the source (i.e. the user’s own location). The basic
intuition behind our approach is two-fold: i) mobile users often
explicitly express their geo-intent when performing certain
location-specific queries; and ii) more often than not, their geo-
intent is local, namely related to a location in close vicinity
to their current location, e.g. a nearby restaurant or the local
weather. By correlating the user geo-intent thus expressedin
location-specific queries with information regarding the CDSN
infrastructure, e.g. the basestation a mobile device is cur-
rently associated with(such information may be obtained from
mobile devices1), we can potentially geo-map the CDSN’s
basestation infrastructure.

To investigate whether — and to what extent — our
proposed approach can help geo-map the CDSN infrastructure,
we employ two sources of data collected at a link inside
the (wired) backbone IP network of a CDSN. The first data
source comprises of the RADIUS/RADA packet data sessions
which contain the basestation id’s (BSIDs) andanonymized
user id’s; the second data source is collections of application
sessions which contain URLs extracted from HTTP headers
and (anonymized) user id’s. We first mine the URL datasets
to extract location-specific services/apps in order to identify
user queries that likely express explicit geo-intent. We find that
the most prevalent type of geo-intent queries in our datasets
are zip-code containing weather queries in which users seek
weather information for the location specified by a zip-code.
Hence, in this paper we focus our investigation on the efficacy
of utilizing zip-codes in weather queries for geo-mapping the
CDSN infrastructure.

Using the basestation with ground-truth GPS locations that
also see zip-code queries (more than20% of the total bases-
tations contained in our datasets), we evaluate the efficacyof
geo-mapping the CDSN infrastructure using zip-codes as user
geo-intent. We find that we can, in general, geo-localize more
than 50% of these basestations within3 − 4 km and more
than 75% of them within5 − 6 km (alternatively, within one
or a few neighboring zip-code areas). The granularity is higher
for densely populated urban and metropolitan areas as shown
in latter sections. Based on these observations we develop
effective heuristics which exploit user geo-intent as wellas
user mobility for geo-mapping not only those basestations
which see zip-code queries, but also those basestations which

1For example, some smart phone mobile operating systems, e.g. Window
Mobile OS, provide certain APIs via which the BSID of the basestation a
mobile device is associated with can be obtained.



do not, but instead are associated with users who issue geo-
intent queries at a nearby basestation2.

Admittedly, one limitation of our datasets is that they do not
contain many mobile users with GPS-enabled devices. How-
ever, for a small number of users who do have GPS on their
device, we can geo-map the associated basestations at finer
granularity and better accuracy (within a few hundred meters
to 1 km). We expect that with the increasing popularity of
newer generations of GPS-enabled devices, our methodology
will likely yield far better results than reported here.

The remainder of the paper is organized as follows: Sec-
tion I-A discusses related work. Section II provides some
background on the CDSN infrastructure and the datasets used.
Section III presents our methodology for identifying and
extracting geo-intent. Section IV describes the various geo-
mapping heuristics employed, and the paper is concluded in V.

A. Related Work

Much of the existing work on localization in cellular net-
works has focused primarily on geo-locating mobile users or
devices via signal strength based methods (e.g. triangulation)
using known locations of cell towers (basestations). For a very
recent study on this topic and related work, see [7] and the ref-
erences therein. In contrast, we attempt to address the converse
problem, namely, utilizing user geo-intent to map the CDSN
infrastructure. The notion of user geo-intent has been proposed
and studied recently in a different context,web search, with
the goal to return search results that are more relevant to
user queries. For instance, in [5], the authors analyze search
queries from users, and classify them into explicit geo-intent
and non-geo-intent queries. Our work adopts a similar notion
of (explicit) geo-intent and applies it to geo-map the CDSN
infrastructure.

II. PRELIMINARIES AND DATASETS

A. CDSN Infrastructure

In the traditional layered network architecture terms, a typ-
ical (3G) cellular data service network (CDSN) infrastructure
consists of a (layer-1/layer-2) cellular network substrate com-
prising of a large number of basestations and radio network
controllers (RNCs) geographically dispersed across the entire
coverage of a cellular service provider (CSP). Each basestation
is uniquely identified by itsBasestation Identifier(BSID),
that contains three parts: the System Identifier (SID), Network
Identifier (NID), and Cell Identifier (CID). The BSID names-
pace is hierarchical and has geo-physical significance. An SID
spans a large geographical region (e.g. one or more states in
the US), and is composed of multiple NIDs, each in turn
representing a smaller geo-physical area. An NID, consists
of many basestations, each covering a cell which is uniquely
identified by a CID. Fig. 1(b) and (c) respectively illustrate
the geo-physical clustering of five sample SIDs (represented
by different shaded clusters), and five NIDs within a single
SID. A database of SIDs, publicly available on the Internet [3],

2Determined by the time interval between accesses by common users.

provides ownership (CSP) and geo-location details - usually
the name of the city associated with the SID and the state in
which it lies. Though coarse-grained, this database servesas
a good cross-reference in our analysis.

B. Datasets

Two datasets are used in our study, which are collected at a
link inside the core IP network of a large North American
cellular 3G service provider. The first dataset (henceforth
referred to asDS-I) was collected during a week-long period
in October, 2008, representing 2 million users with 24 million
packet sessions containing 110 million application sessions.
The second dataset (DS-II) was collected over a single day in
July, 2009, with 1.7 million users, 13 million packet sessions
containing 147 million applications sessions. Each dataset
consists of two sources of data: RADIUS/RADApacket
data sessions, andapplication sessions. The RADIUS/RADA
packet data sessions contain records of user activities such
as the beginning and end times of a user’s data session,
the (anonymized) user id, the basestations (BSIDs) the user’s
mobile device is associated with during the data session etc.
The application sessions records are the HTTP headers of
users’ Internet activities. We correlate the records from the
two data-sources on the basis of the anonymized IP address in
an HTTP application session, and match the HTTP timestamp
such that it is between two consecutive RADA START and
STOP messages, in the RADIUS/RADA packet data sessions.
The URLs accessed in HTTP application sessions are ex-
tracted for identifying geo-intent queries. The BSIDs and
(anonymized) user ids are extracted from the RADIUS/RADA
packet data sessions. We primarily exploit the HTTP URLs,
BSIDs and (anonymized) user ids, for geo-mapping the CDSN
infrastructure. To verify and validate our geo-intent based
mapping approach, we also utilize a collection of basestations
for which we have theground-truthGPS locations; this forms
a representative subset of basestations spread across the US
mainland (see fig. 1(a)).

III. E XPLICIT GEO-INTENT OF USERS

This work explores whether we can exploit “explicit geo-
intent” of mobile users to learn the CDSN infrastructure, i.e.
the physical locations of basestations. We defineexplicit geo-
intent as location information contained in queries submitted
by users to certain services (e.g. weather or map services) in
which they seek information regarding a specific location. We
now discuss various aspects of the explicit geo-intent in our
dataset DS-I (owing to its week-long span) in the following
subsections.

A. Extracting Explicit Geo-intent

We employ a set of heuristics to identify and extract geo-
intent from the HTTP URLs in our datasets. Our objective is to
find a set of services seen in our URL trace with a geo-intent
format that can be automatically extracted, giving us a map-
ping between URL and the geo-intent expressed in that URL.
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Fig. 1. Illustration of geo-physical clustering of BSID’s at SID/SID-NID level (Ground-truth set).

Through a manual process of identifying a set of location-
specific keywords, such as street or state names, zip-codes,
and “GPS-like” latitude-longitude co-ordinates, that mayor
may not be directly provided by the (satellite) global position
system (GPS) service (see§III-C for a details), we create a set
of rules to perform such extraction. The output of this step are
rules for extracting the embedded geo-physical identifiersin
the URL string for each hostname (e.g.www.weather.com
or www.mapquest.com). Through such rules (heuristics),
we identify over a million URLs with geo-identifiers from
DS-I and half a million from DS-II.

On closer scrutiny of the geo-identifier information con-
tained in the extracted URLs, we find that zip-codes and
“GPS-like” co-ordinates dominate the URL geo-identifier set
accounting for≈ 99% of the URLs we are able to parse.
Moreover, such URLs primarily belong to weather information
internet hosts. In the following subsections, therefore, we focus
on such URLs from the weather services to determine whether
or not these URLs indeed reveal users’ geo-intent.

B. Zip-codes in Weather Queries

Weather queries are obvious candidates for finding zip-
code information due to the nature of online weather services.
Most phones feature a weather application allowing users to
enter/store the zip-codes for one or more locations of interest.
Often, these queried locations represent the user’s home or
place of work. Therefore, the zip-codes in weather queries
provide a good, though not always precise, indication of the
querying user’s location. We later evaluate the usefulness
and accuracy of such zip-code information in our datasets
for the purposes of geo-mapping the CDSN’s basestation
infrastructure.

Throughout this work, we convert the zip-codes in geo-
intent queries to GPS-like co-ordinates as follows. The US
census bureau [1] provides approximate boundaries of the zip-
code tabulation areas (ZCTA)3 encompassing each zip-code
in the US. From the boundary co-ordinates for a given zip-
code, we compute thecentroid (a pair of latitude-longitude
co-ordinates). In what follows, the term zip-code will invari-
ably mean the corresponding centroid location calculated as
described here.

3Some ZCTAs may span several zip-codes in less populous regions. As our
results later show, for our purpose the ZCTAs provide sufficient accuracy.

C. GPS-like co-ordinates in Weather Queries

Next, we investigate the URLs (weather and other queries)
containing GPS-like (latitude-longitude) co-ordinates.A ma-
jority of these GPS-like co-ordinates appear in the HTTP
responses and not the HTTP requests. Moreover, the co-
ordinates in HTTP responses show significant variance. For
example, an HTTP request for weather information for zip-
code = 53108, received two HTTP responses with co-ordinates
L1 = (lat = 42.82, long = −87.93) and L2 = (lat =
42.82, long = −99.76). Such co-ordinates, sometimes used
for displaying maps on the user device, therefore, need not
reflect user geo-intent in practice and thus we do away with
them (see the technical report [6] for details).

However, for a small number of URLs related
to a few services, e.g. GPSToday hosted by
www.geoterrestrial.com 4, we do see GPS-co-
ordinates in HTTP requests. Hereafter, we refer to this small
set of GPS co-ordinates as theGPS geo-intentdataset and
return to it briefly in§IV-A.

For the remainder of the paper, we focus on zip-code
information, except where noted otherwise. We remark that our
geo-mapping methodology, presented later, can incorporate
GPS co-ordinates with the potential to provide greater preci-
sion as more GPS-enabled devices and services are deployed.

D. Spread of Geo-intent in the Basestation Infrastructure

To associate the geo-intent expressed in users’ queries with
the basestation infrastructure of the CDSN, we first need to
identify and extract relevant basestation information (BSID
associated with a user at the time of query). Henceforth, we
say that a basestationB, seesa zip-codeZ if at least one
user queries for weather information (or any information in
general) for zip-codeZ while communicating with basestation
B. Although the number of users expressing their explicit geo-
intent is a small fraction of the overall user-base (less than
2%), the number of basestations that see at least one zip-code
query is significantly large(≈ 23%); and cover a represen-
tative fraction of the infrastructure (SID-NID pairs/ SIDs).
Therefore, explicit geo-intent is pervasive not only in terms
of geographic coverage but also in the CDSN infrastructure.

4GPSToday is a service that provides topographical (e.g. altitude) and
weather related information at the user’ current location.Hence the GPS co-
ordinates contained in user queries to this service reflectexplicit user geo-
intent at the source (user) location.



Clearly, if the geo-intent of users indeed captures their geo-
location, it can possibly help geo-map a significant fraction of
the basestation infrastructure across wide geographies.

Moreover, we observe that the50th and 75th percentiles
for the ratio of unique zip-codes to the number of geo-intent
queries seen at a basestation are0.2 and 0.4 respectively;
a relatively small number. This observation has important
implications in the process of geo-mapping of the basestation
infrastructure, as will be explored in the next subsection.

E. From Geo-intent to Geo-location

With about23% of the basestations in our dataset seeing
zip-code containing weather queries, can we use the explicit
geo-intent information contained therein to geo-localizethe
basestations in question? Among the basestations with ground-
truth GPS locations, we find that roughly20% (a representative
sample) also see zip-code queries; moreover, they span105
SID-NID pairs across81 SIDs. In the following we will refer
to the set of such basestations (≈ 2, 500 in all), with both the
ground-truth GPS locations and associated zip-code queries,
as theground-truth-location-&-zip-codeBSID dataset.

We now examine the relationship between the locations
of the basestations and users’ geo-intent (the zip-codes as-
sociated with the basestations). Given a basestationB with
known GPS location denoted byLB = (latB, longB), let
ZB = {Z1, Z2, ...., Zk} be the set of zip-codes seen atB.
Let CZi

= (lati, longi) be the co-ordinates for the centroid
associated withZi. We denote the distance (in km) between
the basestationB and the zip-codeZi by δB

i = dist(LB, CZi
)

5. In particular, we defineδB
min = min1≤i≤kδB

i and δB
max =

max1≤i≤kδB
i . Further, for basestations that are associated with

multiple zip-codes (k ≥ 3), we also compute the distance
between each basestation and the most frequently queried zip-
code/s associated with it (δB

∗ ).
For the basestations in theground-truth-location-&-zip-code

set, the distance between basestationB and the closest queried
zip-code (δB

min) is within 1 − 1.5 km range for25%, 3 − 3.5
km for 50% and within 5 − 6 km for 75% of basestations.
We observe similar distributions forδB

∗ . In contrast, the
corresponding figures forδB

max are: within 7 km for25%,
12.5 km for 50% and20 km for 75% of basestations. In short,
while the distance between the true location of a basestation
and the farthest queried zip-code seen by it can be quite hight
(10’s km), the closest and most frequently queried zip-codes
(often same for most basestations) are often within reasonable
proximity (5-6 km).

In order to incorporate varying sizes of zip-code areas (zip-
code sizes vary between urban and rural areas), we use the
centroid of each zip-code and perform aVoronoi partitionof
the entire US mainland6. Given a basestationB with known
GPS locationLB = (latB, longB), let ẐB be thehomezip-
code ofB and hB

i the hop-count distance between̂ZB and

5Haversine distance with earth’s mean radius = 6,371 km.
6Instead of partitioning the US mainland in terms of the ZCTA boundaries

using data from [1], we use the Voronoi partitions for ease ofanalysis and
computation.

Zi ∈ ZB in the Delaunay graph (dual of the Voronoi partition).
We observe that for90% of the basestations,hB

i ≤ 3 for
over 75% of Zi’s seen at them. We, therefore, conclude that
for a large majority of basestations, a significant percentage
of zip-codes queried are in and around the geo-physical
neighborhood of their home zip-codes.

IV. GEO-MAPPING THE BASESTATION INFRASTRUCTURE

Based on the analysis and observations made in the previous
section, we now present some heuristics to geo-map the
basestation infrastructure. For evaluating the accuracy of each
suggested heuristic, we make use of dataset DS-II in this
section.
Direct Geo-mapping via Geo-Intent.For those basestations
which see at least one zip-code containing weather query,
we directly geo-localize them using explicit geo-intent by
means of the following heuristics. Given a basestationB,
let ZB = {Z1, Z2, ..., Zk} be the set of valid zip-codes
queried by its usersUB = {U1, U2, ..., Ul}. The first heuristic,
the Majority Voting (MV) scheme, selects the most probable
location (or locations) from all possible zip-code locations
(Zi)’s as follows: Each userUi ∈ UB has one simple vote.
Recall that a given userUi may query the same zip-code
Zj multiple times. In order to prevent such frequent voters
from skewing the vote count, we permit a user to vote only
once. Also, a given userUi may possibly query multiple zip-
codes from the setZB. In such cases, we split the simple
vote ofUi proportionally among all the zip-codes s/he queries.
For example, ifUi queries zip-codeZ1 thrice andZ2 twice,
Z1 receives0.6 vote andZ2 receives0.4 vote from Ui. The
winner of the election, i.e. the zip-code receiving most votes,
is chosen as the most probable geo-location forB. When
there are multiple winners (ties), all of them are chosen as
equally probable locations. Fig. 2(a) shows the error incurred
(compared to the ground-truth) in geo-mapping approximately
3,500 basestations using the MV-scheme. We observe that for
75% basestations thus geo-mapped, the error is within5−7 km
range, quite similar to what we observed for DS-I in§III-E.
Indirect Geo-mapping based on User Mobility.The direct
geo-mapping via geo-intent helps geo-localize around20%
of the basestations in our datasets. To map other basesta-
tions, those not mapped during direct geo-mapping due to
lack of geo-intent queries, we exploit user movement. To
do so, we introduce thebasestation-user-mobility graph, GM ,
where the vertices are the basestations (BSIDs) and an edge
e = (Bi, Bj) is introduced between two verticesBi andBj if
at least one user accesses both of them (regardless of order)
within a short interval of time∆T (say 5 minutes). Given
GM thus defined, letBmapped denote the set of basestations
geo-located via the direct geo-mapping heuristic described
above, andBunmapped be the set ofunmappedbasestations.
For each basestationB ∈ Bunmapped, if it is connected to
some basestationB ∈ Bmapped via some paths, we define
h(B, B) as the shortest path distance (hop-count) fromB

to B. Then, let h(B,Bmapped) = minB∈Bmapped
h(B, B).
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Fig. 2. Error in geo-mapping compared to the ground-truth set.

Note thath(B,Bmapped) = ∞ if B is not connected to any
B ∈ Bmapped.

In our datasets, we have about22% basestations in
Bunmapped that are connected to at least one basestation in
Bmapped at a 1-hop distance (i.e.h(B,Bmapped) = 1). Hence,
we geo-localize them first by exploiting their connectivities
to the basestations inBmapped. The challenge here is to
map the connectivity inGM to geo-locations or zip-code
neighborhoods in the Delaunay graph of US zip-codes. For
anyB ∈ Bunmapped such thath(B,Bmapped) ≤ d such that it
is connected to at leasts basestations inBmapped that are at
mostd hops away fromB, we geo-localizeB by constructing
a connected zip-code neighborhood in the Delaunay graph of
zip-codes. LetNd(B) be the set of home zip-codes of the
(directly mapped) basestationsB’s in Bmapped that are at most
d-hops away fromB (note that |Nd(B)| ≥ s). Using the
centroids ofẐB ’s, we construct a convex hullHB, covering
all ẐB ’s, as the most probable geo-location forB.

Fig. 2(b) shows the error incurred (compared to the ground-
truth) in geo-mapping approximately 4,000 basestations using
the user-mobility graph. Here we observe relatively higher
error rates mostly in rural areas where the geo-physical ex-
panse of zip-codes is much larger and therefore an edge in the
Delaunay graph between adjacent zip-codes may cover tens of
kilometers. Despite this, the mapping accuracy is much higher
(to within a city) than the county level information available
in the SID database [3].

A. Geo-mapping using GPS Geo-intent

Lastly, we use the smallGPS geo-intentdataset discussed
in section §III-C to illustrate the efficacy of our approach
when GPS-based geo-intent (in particular, when the GPS co-
ordinates are associated with the source (user) locations of the
geo-intent. We extend the direct geo-mapping heuristics from
§IV to the case of GPS co-ordinates, and apply tessellation and
density estimation to geo-localize basestations by computing
a (small) neighborhood area (rectangular cell) as their most
probable locations. Due to the space limitation, the details are
omitted. Fig. 2(c) shows the mean distance (error) between the
ground-truth and the inferred (centroid) locations of the two
dozen basestations in the small GPS geo-intent dataset (and
for which we have the ground-truth locations). We see that
the overall accuracy is within0.5 - 1 km. Hence we believe
that with the increasing popularity of newer generations of

GPS-enabled smart phones and location-aware services, geo-
mapping based on user geo-intent will yield more accurate
results than what can be obtained using zip-codes alone.

V. CONCLUSION AND FUTURE WORK

In this paper we put forth a novel approach for mapping
the CDSN basestation infrastructure via(explicit) user geo-
intent, which circumvents the handicaps plaguing conventional
approaches (e.g. war-driving). We developed heuristics for
identifying user geo-intent to geo-map the basestations and
evaluated their efficacy using a subset of basestations with
knownground-truthGPS locations. Using zip-codes contained
in user weather queries, we demonstrated that a large portion
of basestations can be geo-mapped within a3.5−6.0 km range
in general, within1.5−2 km range in densely populated urban
areas and often within 1 km in large metro-areas.

Given the exponential growth in cellular data traffic, we
believe that mapping the CDSN infrastructure is a critical step
in understanding how to best expand and evolve the CDSN
infrastructure to better meet growing user demands, and to
guide the development and deployment of innovative location-
aware services and applications that cater to mobile users and
devices. Our study is only an initial step along this direction,
and much additional research is still sorely needed.
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