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Abstract—Despite the rapid growth in cellular data traffic, query, or the source (i.e. the user’'s own location). Thedasi
we know very little about the (operational) cellular data service intuition behind our approach is two-fold: i) mobile useftea
network (CDSN) infrastructure. A key step in the process of explicitly express their geo-intent when performing ceerta

developing any such understanding is to first understand the | fi i ies: and i ften th t ithei
locations and distribution of the basestations in the CDSNri- location-specific queries; and ii) more often than not,rtgeo-

frastructure that serve as physical access points for end ess for  intent islocal, namely related to a location in close vicinity
communicating with the underlying network. Such knowledgenot  to their current location, e.g. a nearby restaurant or tieallo
only can provide critical insight into the the CDSN infrastructure,  weather. By correlating the user geo-intent thus expressed
but can also guide the development of innovative (e.g. lodah-  ,c4ti0n-specific queries with information regarding tHeSN
aware) services and applications. In this paper we propose a . . . . .
novel approach for mapping the CDSN basestation infrastruture Infrastructurg, e.g..the baS.eStat'on_ a mobile dev'c.:e IS cur
via (explicit) user geo-intent. The intuition behind the proposed rently associated with(such information may be obtainechfr

approach is to exploit specific geo-locations (i.e. geo-imt) mobile device¥, we can potentially geo-map the CDSN's
contained in user queries to location-based services, andrtelate  pasestation infrastructure.

them with basestation id's to geo-map the CDSN infrastructue. . .
To investigate the validity of our approach, we employ data To investigate whether — and to what ext_ent —our
(RADIUS/RADA data sessions and application sessions) cetited Proposed approach can help geo-map the CDSN infrastrycture

at the core IP network inside a CDSN. We develop heuristics we employ two sources of data collected at a link inside
for identifying user geo-intent and for geo-mapping the CDSl the (wired) backbone IP network of a CDSN. The first data
infrastructure — in particular, the basestations — and evaliate  gqrce comprises of the RADIUS/RADA packet data sessions
tgg'é ﬁ)fzgﬁgxsf’smg a subset of basestations witlground-truth which contain the basestation id's_ (BSIDs)_ aadonym_iz_ed
user id’s; the second data source is collections of apjphicat
sessions which contain URLs extracted from HTTP headers
and (anonymized) user id’s. We first mine the URL datasets
With wide adoption of smart phones and other mobilg, extract location-specific services/apps in order to tifien
devices, there has been an unprecedented rise in servates §8er queries that likely express explicit geo-intent. We firat
rely on the locations of users (e.g. weather, még=ste-mg.  the most prevalent type of geo-intent queries in our dagaset
Despite this tremendous growth, we know little, for exampl@re zip-code containing weather queries in which users seek
about the topology and geographical distribution of the celeather information for the location specified by a zip-code
lular network substrate (basestations); shrouded in sed® Hence, in this paper we focus our investigation on the efficac
cellular service providers (CSP) for security reasons. of utilizing zip-codes in weather queries for geo-mapping t
An ecosystem of services thattively collect information CDSN infrastructure.
about the physical location of cellular substrate (basests)  ysing the basestation with ground-truth GPS locations that
and Wi-Fi hotspots [2], [4] already exists. Often, this igso see zip-code queries (more tHz0¥ of the total bases-
accomplished via “war-driving” (dedicated users) the mntitations contained in our datasets), we evaluate the effioficy
region of interest and collecting geo-spatial data via a Gpéeo-mapping the CDSN infrastructure using zip-codes as use
enabled smartphone, thereby associating the basestatitns geo-intent. We find that we can, in general, geo-localizeemor
the geo-location of the “war-driving” user. Such an apphoaghan 50% of these basestations withih— 4 km and more
is both expensive and prone to the frequent chu_rr_l _in inastr than 75% of them withirs — 6 km (alternatively, within one
ture - coverage expansion, mergers-and-acquisitions &SCSy; 5 few neighboring zip-code areas). The granularity iibig
etc. Our aim, amongst others, is to provide a cost effectiyg; gensely populated urban and metropolitan areas as shown
(passive) alternative to such a “war-driving” approach. in latter sections. Based on these observations we develop
In this paper we propose and explore a novel approachdfective heuristics which exploit user geo-intent as vl
map the CDSN basestation infrastructure Via (eXp|ICIt) rus%ser mob|||ty for geo_mapping not on'y those basestations
geo-intent By geo-intent we mean (explicit) geo-locationyhich see zip-code queries, but also those basestatiorhwhi
information specified by users while submitting queries to
certain services (e.g. weather or map services), in whic _ _ _
For example, some smart phone mobile operating systemsy\énglow

they eXp"C.itIy seek information _regardihg a specific lsoat Mobile OS, provide certain APIs via which the BSID of the bstaon a
Such geo-intent may be associated with the target of a useibile device is associated with can be obtained.

I. INTRODUCTION



do not, but instead are associated with users who issue gemvides ownership (CSP) and geo-location details - uguall
intent queries at a nearby basestation the name of the city associated with the SID and the state in
Admittedly, one limitation of our datasets is that they do navhich it lies. Though coarse-grained, this database seases
contain many mobile users with GPS-enabled devices. How-good cross-reference in our analysis.
ever, for a small number of users who do have GPS on their
device, we can geo-map the associated basestations at fihePatasets
granularity and better accuracy (within a few hundred neter 1y, gatasets are used in our study, which are collected at a
to 1 km). We expect that with the increasing popularity Ofi\k inside the core IP network of a large North American
newer generations of GPS-enabled devices, our methodolegylyjar 3G service provider. The first dataset (henceforth
will likely y|e_Id far better results_than reported here. referred to aDS-I) was collected during a week-long period
~ The remainder of the paper is organized as follows: Segoctober, 2008, representing 2 million users with 24 oiili
tion I-A discusses relateq work. Section Il provides SOMEacket sessions containing 110 million application sessio
background on the CDSN infrastructure and the datasets usggk second dataseD8-1l) was collected over a single day in
Section Il presents our methodology for identifying andyy 2009, with 1.7 million users, 13 million packet sessio
extracting geo-intent. Section IV describes the various-gecontaining 147 million applications sessions. Each datase
mapping heuristics employed, and the paper is concluded inMjnsists of two sources of data: RADIUS/RADpacket
A. Related Work data sessionsandgpplication _sessionsThe RADIUS/RADA
o S packet data sessions contain records of user activitiel suc
Much of the existing work on localization in cellular net-5¢ the beginning and end times of a users data session,
works has focused primarily on geo-locating mobile users gfe (anonymized) user id, the basestations (BSIDs) thesuser
devices via signal strength based methods (e.g. triangn)at mopile device is associated with during the data session etc

using known locations of cell towers (basestations). Foeg vV 1 application sessions records are the HTTP headers of
recent study on this topic and related work, see [7] and the r§gsers' Internet activities. We correlate the records fram t
erences therein. In contrast, we attempt to address th@s®B 4 qata-sources on the basis of the anonymized IP address in
problem, namely, utilizing user geo-intent to map the CDSY, 11p application session, and match the HTTP timestamp
infrastructure. The notion of user geo-intent has beengsep ¢ ,ch that it is between two consecutive RADA START and
and studied recently in a different conteigb searchwith  sTop messages, in the RADIUS/RADA packet data sessions.
the goal to return search results that are more relevante URLs accessed in HTTP application sessions are ex-
user queries. For instance, in [5], the authors analyzeebeagacteq for identifying geo-intent queries. The BSIDs and
queries from users, and classify them into explicit geedt ononymized) user ids are extracted from the RADIUS/RADA
and non-geo-intent queries. Our work adopts a similar notigy; ket data sessions. We primarily exploit the HTTP URLS,
of (explicit) geo-intent and applies it to geo-map the CDSINg|ps and (anonymized) user ids, for geo-mapping the CDSN
infrastructure. infrastructure. To verify and validate our geo-intent lghse

Il. PRELIMINARIES AND DATASETS mappi_ng approach, we also utilize a coIIectipn of bgsemati

for which we have thground-truthGPS locations; this forms
A. CDSN Infrastructure a representative subset of basestations spread acrossSthe U
In the traditional layered network architecture terms, @& ty mainland (see fig. 1(a)).

ical (3G) cellular data service network (CDSN) infrastuuret
consists of a (layer-1/layer-2) cellular network substredm- I1l. EXPLICIT GEO-INTENT OF USERS
prising of a large number of basestations and radio networkThis work explores whether we can exploit “explicit geo-
controllers (RNCs) geogra}phically_ dispersed across tr!]ieeenintent” of mobile users to learn the CDSN infrastructure, i.
coverage of a cell_u_lar service prowder_ (CSP). E_a_1ch batesta the physical locations of basestations. We deérplicit geo-
Itialt"ygrl:gi};] sl(:ﬁrne;[gliirtz y tﬁZBS;setztr?]tll(:Fenlgf?enrtlglgsllxltjeit’w intentas location information contained in queries submitted
Identifier (NID), and Cell Identifier (CID). The BSID names—by users to certain services (€.g. weather or map servioes) |

which they seek information regarding a specific locatioe. W

pace is hierarchical and has geo-physical significance. IBn Snow discuss various aspects of the explicit geo-intent in ou

spans a large geographical region (e.g. one or more state i . ) : ; .
the US), and is composed of multiple NIDs, each in tur%lé?aset DS-I (owing to its week-long span) in the following

Yubsections.

representing a smaller geo-physical area. An NID, consistlél. sections

pf many basestations,.each covering a cell which i§ uniquely Extracting Explicit Geo-intent

identified by a CID. Fig. 1(b) and (c) respectively illustat o . )

the geo-physical clustering of five sample SIDs (represente e employ a set of heuristics to identify and extract geo-
by different shaded clusters), and five NIDs within a singl&tent from the HTTP URLSs in our datasets. Our objective is to

SID. A database of SIDs, publicly available on the Inter@gt [ find @ set of services seen in our URL trace with a geo-intent
format that can be automatically extracted, giving us a map-

2Determined by the time interval between accesses by commers.u ping between URL and the geo-intent expressed in that URL.
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Fig. 1. lllustration of geo-physical clustering of BSID’s @ID/SID-NID level (Ground-truth set).

Through a manual process of identifying a set of locatioiG. GPS-like co-ordinates in Weather Queries
specific keywords, such as street or state names, zip-code
and “GPS-like” latitude-longitude co-ordinates, that may

may not be directly provided by the (satellite) global posit jority of these GPS-like co-ordinates appear in the HTTP

system (GPS) service (sghl-C for a details), we Cre"’ue"’lsmresponses and not the HTTP requests. Moreover, the co-

of rules to perfor_m such extraction. The outpu_t of _th|s sh&ap rdinates in HTTP responses show significant variance. For
rules for extracting the embedded geo-physical identifiers

the URL string f h host th example, an HTTP request for weather information for zip-
€ string for each hostname (evgw. weat her . COM code = 53108, received two HTTP responses with co-ordinates
or ww. mapquest . com. Through such rules (heuristics),

. . o . ) " Ly = (lat = 42.82,long = —87.93) and Ly = (lat =
we identify over a _m|II|on URLs with geo-identifiers from42'827long — _99.76). Such co-ordinates, sometimes used
DS-I and half a million from DS-II.

) ) o ) for displaying maps on the user device, therefore, need not
On closer scrutiny of the geo-identifier information con

) h ] | reflect user geo-intent in practice and thus we do away with
tained in the extracted URLs, we find that zip-codes anfem, (see the technical report [6] for details).

“GPS-like” co-ordinates dominate the URL geo-identifiet se However. f
accounting for~ 99% of the URLs we are able to parse o ’
Moreover, such URLSs primarily belong to weathermformatlow' geoterrestrial.com 4 we do see GPS-co-

internet hosts. In the following subsections, thereforefeeus  , jinates in HTTP requests. Hereafter, we refer to this lsmal

on such URLs from the weather services to determine whethel ¢ ~ps co-ordinates as tGPS geo-intentlataset and
or not these URLs indeed reveal users’ geo-intent. return to it briefly in§IV-A

For the remainder of the paper, we focus on zip-code

B. Zip-codes in Weather Queries information, except where noted otherwise. We remark that o
) . ) o .geo-mapping methodology, presented later, can incorporat

Weather queries are obvious candidates for finding Zigsps co-ordinates with the potential to provide greateriprec

code information due to the nature of online weather sesvicesion as more GPS-enabled devices and services are deployed.
Most phones feature a weather application allowing users to

enter/store the zip-codes for one or more locations of éster Spread of Geo-intent in the Basestation Infrastructure
Often, these queried locations represent the user's home or ) ) ] ] .
place of work. Therefore, the zip-codes in weather queriesTO @ssociate the geo-intent expressed in users’ queriés wit
provide a good, though not always precise, indication of tf{Be basestation infrastructure of the CDSN, we first need to
querying users location. We later evaluate the usefulndg§ntify and extract relevant basestation information IBS
and accuracy of such zip-code information in our dataset§sociated with a user at the time of query). Henceforth, we
for the purposes of geo-mapping the CDSN's basestatid®y that a basestatioB, seesa zip-codeZ if at least one
infrastructure. user queries for weather information (or any information in
Throughout this work, we convert the zip-codes in gecgeneral) for zip-code’ while communicating with basestation

intent queries to GPS-like co-ordinates as follows. The US: Althoughthe”n?mbgrof ijsirs exprelsl,smg thbe" eXFI’“C't'gﬁO
census bureau [1] provides approximate boundaries of the €Nt is @ small fraction of the overall user-base (lessitha

code tabulation areas (ZCTA)encompassing each zip-codeZ%)’ the number of basestations that see at least one zg-cod

in the US. From the boundary co-ordinates for a given ziﬁ‘-uery is significantly large~ 23%); and cover a represen-

code, we compute theentroid (a pair of latitude-longitude tative fraction c.)f.the |n.frastru.cture (Sl,D'NlD palrs/. Sibs
co-ordinates). In what follows, the term zip-code will iniva 1 nerefore, explicit geo-intent is pervasive not only innter

ably mean the corresponding centroid location calculated & 9€09raphic coverage but also in the CDSN infrastructure.
described here.

?Next, we investigate the URLs (weather and other queries)
containing GPS-like (latitude-longitude) co-ordinatsma-

or a small number of URLs related
a few services, e.g. GPSToday hosted by

4GPSToday is a service that provides topographical (e.gudd) and
weather related information at the user’ current locatidance the GPS co-
3Some ZCTAs may span several zip-codes in less populousnsghs our  ordinates contained in user queries to this service reéigpticit user geo-
results later show, for our purpose the ZCTAs provide seifficiaccuracy. intent at the source (user) location.



Clearly, if the geo-intent of users indeed captures thed-geZ, € Zp in the Delaunay graph (dual of the Voronoi partition).

location, it can possibly help geo-map a significant frattid We observe that fo0% of the basestations;? < 3 for

the basestation infrastructure across wide geographies. over 75% of Z,’s seen at them. We, therefore, conclude that
Moreover, we observe that thg!* and 75" percentiles for a large majority of basestations, a significant peragata

for the ratio of unique zip-codes to the number of geo-intenf zip-codes queried are in and around the geo-physical

gueries seen at a basestation arg2 and 0.4 respectively; neighborhood of their home zip-codes.

a relatively small number. This observation has important

implications in the process of geo-mapping of the basestati |V. GEO-MAPPING THE BASESTATION INFRASTRUCTURE

infrastructure, as will be explored in the next subsection. _ _ _ )
Based on the analysis and observations made in the previous

E. From Geo-intent to Geo-location section, we now present some heuristics to geo-map the
With about23% of the basestations in our dataset seeirgasestation infrastructure. For evaluating the accuraepach
zip-code containing weather queries, can we use the expligilggested heuristic, we make use of dataset DS-Il in this
geo-intent information contained therein to geo-localize section.
basestations in question? Among the basestations witmdrouDirect Geo-mapping via Geo-Intent.For those basestations
truth GPS locations, we find that rougl29% (a representative which see at least one zip-code containing weather query,
sample) also see zip-code queries; moreover, they $pan we directly geo-localize them using explicit geo-intent by
SID-NID pairs across1 SIDs. In the following we will refer means of the following heuristics. Given a basestati®n
to the set of such basestations 2, 500 in all), with both the let Zp = {Z1,Z,,...,Z;} be the set of valid zip-codes
ground-truth GPS locations and associated zip-code ajerigueried by its user&g = {U, Us, ..., U; }. The first heuristic,
as theground-truth-location-&-zip-cod®8SID dataset. the Majority Voting (MV) scheme, selects the most probable
We now examine the relationship between the locatiot@cation (or locations) from all possible zip-code locato
of the basestations and users’ geo-intent (the zip-codes @3;)'s as follows: Each use¥; € Up has one simple vote.
sociated with the basestations). Given a basestaflowith Recall that a given uset/; may query the same zip-code
known GPS location denoted by.z = (latp,longp), let Z; multiple times. In order to prevent such frequent voters
Zp = {Zy,Zs,...., Zy} be the set of zip-codes seen At from skewing the vote count, we permit a user to vote only
Let Cz, = (lat;,long;) be the co-ordinates for the centroidonce. Also, a given usdl; may possibly query multiple zip-
associated withZ;. We denote the distance (in km) betweegodes from the seZp. In such cases, we split the simple
the basestatio® and the zip-codeZ; by 67 = dist(Lp,Cz,) vote ofU; proportionally among all the zip-codes s/he queries.
5. In particular, we definéd?,, = mini<;<,.67 andéZ, = For example, ifU; queries zip-codeZ; thrice andZ, twice,
mar<i<x62 . Further, for basestations that are associated with receives0.6 vote andZ, receives0.4 vote fromU;. The
multiple zip-codes ¥ > 3), we also compute the distancewinner of the election, i.e. the zip-code receiving mosegot
between each basestation and the most frequently queded ® chosen as the most probable geo-location or When
code/s associated with i§ ). there are multiple winners (ties), all of them are chosen as
For the basestations in tiggound-truth-location-&-zip-code equally probable locations. Fig. 2(a) shows the error iremdir
set, the distance between basestaffoand the closest queried(compared to the ground-truth) in geo-mapping approxipate
zip-code ¢Z. ) is within 1 — 1.5 km range for25%, 3 — 3.5 3,500 basestations using the MV-scheme. We observe that for
km for 50% and within 5 — 6 km for 75% of basestations. 75% basestations thus geo-mapped, the error is withifi km
We observe similar distributions fo6Z. In contrast, the range, quite similar to what we observed for DS-ISili-E.
corresponding figures fosZ . are: within 7 km for25%, Indirect Geo-mapping based on User Mobility. The direct
12.5 km for 50% and20 km for 75% of basestations. In short, geo-mapping via geo-intent helps geo-localize arogath
while the distance between the true location of a basentatiof the basestations in our datasets. To map other basesta-
and the farthest queried zip-code seen by it can be quitd higbns, those not mapped during direct geo-mapping due to
(10's km), the closest and most frequently queried zip-sodiack of geo-intent queries, we exploit user movement. To
(often same for most basestations) are often within reddenado so, we introduce thbasestation-user-mobility grapky,,,
proximity (5-6 km). where the vertices are the basestations (BSIDs) and an edge
In order to incorporate varying sizes of zip-code areas- (zip = (B, B;) is introduced between two verticés and B; if
code sizes vary between urban and rural areas), we use dhéeast one user accesses both of them (regardless of order)
centroid of each zip-code and perfornVaronoi partitionof  within a short interval of timeAT (say 5 minutes). Given
the entire US mainlan8. Given a baseAstatioB with known Gy thus defined, lef3,,q,pea denote the set of basestations
GPS locationLs = (latp,longg), let Zg be thehomezip- geo-located via the direct geo-mapping heuristic desdribe
code of B and h? the hop-count distance betweéh; and above, andBunmapped D€ the set ounmappedoasestations.
For each basestatioB € Bynmapped, If it IS connected to
SHaversine distgpce_ with earth’s mean ra_dius = 6,371 km. _ some basestatiols < Bmapped via some paths, we define
SInstead of partitioning the US mainland in terms of the ZCTubdaries h(B,E) as the shortest path distance (hop-count) frém

using data from [1], we use the Voronoi partitions for easeamdlysis and ikl . iy
computation. to B. Then, leth(B, Bmapped) = ming_p h(B, B).

mapped
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Fig. 2. Error in geo-mapping compared to the ground-truth se

Note thath(B, Byappea) = o0 if B is not connected to any GPS-enabled smart phones and location-aware services, geo
B € Biapped- mapping based on user geo-intent will yield more accurate
In our datasets, we have abo@R% basestations in results than what can be obtained using zip-codes alone.
Bunmappea that are connected to at least one basestation in
Brappea at a 1-hop distance (i.é&.(B, Byapped) = 1). Hence, _ _
we geo-localize them first by exploiting their connectisti N this paper we put forth a novel approach for mapping
to the basestations im,,.,pcs. The challenge here is tothe CDSN basestation infrastructure \{xplicit) user geo-
map the connectivity inG,; to geo-locations or zip-code intent which circumvents the handicaps plaguing conventional
neighborhoods in the Delaunay graph of US zip-codes. FPProaches (e.g. war-driving). We developed heuristies fo
any B € Bunmapped SUch thath(B, Byappea) < d such that it identifying user geo-intent to geo-map the basestat_londs an
is connected to at least basestations if,,,q,,cq that are at evaluated their efficacy using a subset of basestations with
mostd hops away fromB, we geo-localizeB by constructing knownground-truthGPS locations. Using zip-codes contained
a connected zip-code neighborhood in the Delaunay graphifuser weather queries, we demonstrated that a large portio
zip-codes. LetN,(B) be the set of home zip-codes of the?f basestations can be geo-mapped withisa-6.0 km range
(directly mapped) basestatiofs in B,,q,,cq that are at most in general, withinl.5—2 km range in densely populated urban
d-hops away fromB (note that|N,(B)| > s). Using the areas and often W|th|n_1 km in Iar_ge metro-areas.
centroids of Z5's, we construct a convex hulliz, covering ~ Given the exponential growth in cellular data traffic, we
all ZE'S, as the most probable geo-location fBr pelleve that mapping the CDSN infrastructure is a criti¢aps
Fig. 2(b) shows the error incurred (compared to the grouni- Understanding how to best expand and evolve the CDSN
truth) in geo-mapping approximately 4,000 basestatiomgus'nffaStrUCt“re to better meet growing user dema_nds, an_d to
the user-mobility graph. Here we observe relatively high@ide the development and deployment of innovative locatio
error rates mostly in rural areas where the geo-physical ékvare services and applications that cater to mobile usets a
panse of zip-codes is much larger and therefore an edge in #g¥ices. Our study is only an initial step along this direcfi
Delaunay graph between adjacent zip-codes may cover ten@@f Much additional research is still sorely needed.
kilometers. Despite this, the mapping accuracy is mucherigh VI. ACKNOWLEDGMENT
(to within a city) than the county level information availab
in the SID database [3].
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the overall accuracy is withif.5 - 1 km. Hence we believe

that with the increasing popularity of newer generations of

A. Geo-mapping using GPS Geo-intent



