Inferring Applications at the Network Layer
using Collective Traffic Statistics

Yu Jin*, Nick Duffield’, Patrick Haffnet, Subhabrata SénZzhi-Li Zhang*
*Computer Science Dept., University of Minnesota TAT&T Research

Abstract—Operating, managing and securing networks require traffic presenting security threats (such as malware prapzy
a thorough understanding of the demands placed on the netwér and network attacks) in order that resources can be denied.
by the endpoints it interconnects, the characteristics ofhe traffic Thus we can summarize the demand characterization problem

the endpoints generate, and the distribution of that traffic over bei to det . th tial di iti d mi f
the resources of the network infrastructure. A major differen- as being to determine the spaual disposition and mix 0

tiator in the types of resource required by traffic is the clas of resource deman_ds across different applicati_on classes.
endpoint application that generates it. Service providersdeter- Service providers commonly characterize demands by

mine the application mix present in traffic via measurements means of traffic flow measurements provided by routers. These
e.g., flow measurements furnished by routers. Previous workas produce flow records, i.e., summaries of flows of packets

shown that a fairly accurate determination of application type ith head i P d destinati
can be made from this data. However, protocol level informabn, with common header properties (IP source an estination

such as TCP/UDP ports and other parts of the transport header addresses, TCP/UDP ports if visible, IP protocol) together
and also parts of the network header in some cases, may notwith count and total bytes of the flows packets, and timing

be accessible due to the use of encryption or tunneling protols information. The network path taken by such traffic can be
by endpoints or gateways. Furthermore, the utility of ports as yetermined either directly by correlation of multiple meses

signifiers of application type has some limitations due to albse : o - .
and non-standard usage, amongst other reasons. These facto ments at separate locations, or indirectly by combinindhwit

reduce the classification accuracy. In this paper, we propes Nnetwork routing state [1].
a novel technique for inferring the distribution of application Application class is commonly attributed to flow records on

classes present in the aggregated traffic flows between endpts, the basis of the reported TCP/UDP port numbers, sometimes
that exploits both the measured statistics of the traffic flows, in conjunction with traffic features such as total packeyses,

and the spatial distribution of those flows across the netwdk. . o o
Our method employs a two-step supervised model, where the duration, or combinations thereof. Attribution throughripo

bootstrapping step provides initial (inaccurate) inference on the Numbers has several shortcomings. First, this approackdwou
traffic application classes, and thegraph-based calibration step only work for applications witlwell-knownreserved ports [2],
adjusts the initial inference through the collective spatal traffic such as HTTP, Email, DNS; many applications either do not
distribution. In evaluations using real traffic flow measurements have well-known reserved ports (e.g., some chat or gaming

from a large ISP, we show how our method can accurately cladyi licati lect " bitraril
application types within aggregate traffic between endpoits, even applications), or may select ports arbitrarily (e.g., squeer-

without knowledge of ports and other traffic features. Whilethe ~to-peer file sharing applications) or vary port usage in orde
bootstrap estimate classifies the aggregates with 80% acaoy, to hinder detection (e.g., some network attacks). Second,

incorporating spatial distributions through calibration increases even well-known ports may be mis-used or abused by other
the accuracy to 92%, i.e., roughly halving the number of erros. applications (e.g., some peer-to-peer applications usge Jgt
80 to circumvent firewalls). Third, we would like to be able
to attribute applications more finely that is generally lass
Today’s Internet connects hundreds of millions of endminby ports alone. For example, we would like to be able to
such as computer servers, desktops, laptops, smartphaores separate multimedia streaming or downloads from general we
so forth. The management of communication networks thatcesses, both of which are typically performed through TCP
interconnect these hosts requires a detailed understadin port 80. Fourth, in some cases, UDP/TCP ports and some or all
the traffic demands, both their spatial distribution ovee thother transport layer header information may be absent from
network and the manner in which they use network resourcélsw records, either because they are offset within the gacke
A major differentiator amongst the type of resources uséy encapsulation protocols and thus not reported (for exXamp
comes from the class of applications that generates thiecirafwith GRE [3]), or because they are obscured by encryption
for example, web access, VoIP or teleconferencing, email, a'such as by IPSec [4]). Network-level header fields may also
line gaming, multimedia downloads or streaming, and peer-tbe absent (e.g., the IP protocol field with IPSec). Together,
peer file sharing. Resource demands typically differ betwethese factors motivate us to develop a worst-case approach
application classes, e.g., VoIP sessions are low bandwidthapplication identification that can function with only ath
but delay sensitive vs. high bandwidth downloading that ise term thebasic flow featuresn flow records: source and
delay-elastic. Providers need to understand the trafficimix destination IP address, together with aggregate flow Btatis
order that the appropriate resource can be allocated to eafimumber of packets, their total bytes, and flow duration.
application class. Service providers also need to charaete To solve the problem of application attribution knowingynl

I. INTRODUCTION

basic flow features, we are inspired by two strands of recembtocol information, such as port numbers, is strippede Th
related work. First, the accuracy of port-based applicati@valuation result shows that our method can reduce 50% of
classification is increased by including precisely the dashe errors from the best results in the bootstrapping step,
aggregate flow statistics as features on which to classify:aad hence increase the overall accuracy from 80% to 92%.
number of recent works have use machine learning technigdésre importantly, the accuracy is improved for all applioat
to construct flow based classifiers from training datasets dbsses. We also study the temporal persistence of theaycur
application-labeled flows through supervised learning [[8], enhancement over the year. Our proposed inference method
or semi-supervised learning [7]. Second, the statisticpafial exhibits strong temporal stability. When the training tifoe
features of the network flows of a given application, as chahe collaborative prediction model and the testing timerie o
acterized e.g., by the distribution of the number of difféare month apart, we can achieve 40% reduction in the errors from
endpoints exchanging traffic with a given endpoint, deperide bootstrapping step. Even when the time gap extends to 1
strongly on the application class [8]. Therefore, in theecayear, a noticeable error reduction of 23% is still observed.
that port information is not available, we proposectassify The remainder of the paper is organized as follows. Sec-
application traffic based upon the both traffic features aniibn Il introduces the datasets and the notion of colored JAG
the spatial features of the traffic dispositioipecifically, we for visualizing the spatial distribution of traffic classesthe
propose anachine learning approach to derive a set of rulesetwork. The TAG edge label inference problem is defined
to classify from these features formally in Section Il and the related work is discussed at

We now set up our framework to discuss the spatial protire end of Section IIl. We then propose a two-stage model for
erties of application traffic. First we adapt from [8] theipot solving the TAG edge label inference problem in Section 1V,
of a traffic activity graph(TAG for short). The nodes of a and evaluate the performance our method in Section V. Finall
TAG correspond to network endpoints, with two endpointSection VI concludes the paper.
joined by an (undirected) edge if there is any traffic between
them. To each edge we wish to associate a label that encoHesDATASETS' APPLICATION CLASSES AND Colored TAGS
the application class of the traffic. In the context of a set In this section we first describe the network datasets, and
of flow measurement data, the existence of a flow betwepresent the application classes and traffic statistics wlilat
two endpoint implies the existence of an edge between the used for our study. We then formally introduce the new
corresponding nodes; we will also associate with each edg@ation of colored TAGs (traffic activity graphs). The colored
set of traffic features derived from all the flows between ¢hoJAGs provide us a tool to visualize the spatial distribution
nodes. Our problem then is to derive the set of edge labélkapplications in the network. This motivates our work of
from the TAG topology and the traffic features of the edgednferring network applications using collective traffiagstics.

We propose a novel two-step approach to solving the edge
label inference problem. In the firftootstrappingstep, we TCP,UDPBQOA,TDAEI,;EL:CAHONCLASSES
apply a standard supervised machine learning algorithm to

. . ID | TCP/UDP | Class/Label Example Applications
clagsn‘y the edg.es of t.he TAGoaseq on solgly the traffic T T TCP/UDP | Business Midd|gware?a,p,\,’ otc.
attributes associated with each edgégthout using any struc- 2 | TCP/UDP | Chat Messengers, IRC, etc.
tural properties of the TAG. The results of the bootstragpin | 3 | TGP/UDP | DNS DNS application

. L . 4 | TCP/UDP | FileSharing P2P applications
step therefore gives us an _|n|t|a_I edge labeling qf the TAG. | 5 TCP FTP FTP application
the secondyraph-based calibratiorstep, we then incorporate 6 | TCP/UDP | Games Everquest, Xbox, etc.
i i i i 7 TCP Mail SMTP and POP
the inherent nglghborhood and local properties of the edtges 8 | TePrupP | Mutimedia RTSP, MS.Streaming, etd
the TAG to calibrate (re-enforce or re-IabeI_) thg edge liaigel 9 | TcP/uDP | NetNews News
Both two steps can be formulated as classmalti-classclas- 10 TCP SecurityThreat| Worms and trojans
At i e 11 | TCP/UDP | WoIP SIP application
sification problems. We break down each multi-classificatio 0 Tep Web HTTP application

problem into a series of binary classification sub-problems
The decomposition into multiple binary subproblems thatsru o
through our method has been used in [9] to make learning scAte Patasets and Application Classes
to very large data volumes, in the sense of achieving réalist The datasets used for our study are network flow records
learning times and classification throughput. from a large ISP over the time period of a year. A flow
We validate the proposed approach through the applicatisna sequence of packets with a common key — namely,
of traffic classification using flow records gathered over a pthe standard 5-tuple of IP protocol, source and destination
riod of a year from a large ISP. For the purpose of establgshifP addresses, and TCP/UDP ports — that are localized in
ground truth, the flow records are annotated with applicatisime. Flow measurements comprise summary statistics that
labels derived by an operational packet-level classificatiaggregate information derived from a flow’s packet headers
system that utilizes application protocol level infornoati As (including the key, aggregate packet and byte counts for the
test data for classification we used the same flow recordlew, and timing information) that are exported as IP flow
stripped off application labels and all information refati records to a collector. The flow records are collected by
to protocols above the network layer; hence all TCP/UD$pecial purpose traffic measurement devices operatingaat tw

TABLE Il

geographically dispersed sites of the ISP. Due to the huge FLOW-LEVEL FEATURES
traffic volur_ne, sampling is employed in the creatlon_ of flow—zme e Name o6
records, with 1 out of 20 flows reported on, sampling ovel—guration numeric (%) || packet numeric
the standard flow level 5-tuples. However, for each sampledmeanpacketsize (mps)| numeric (*) || byte numeric
flow, the flow record aggregates header information frontsll i ?“earlpaCkeUate (mpr) | numeric (%) || tos numeric
. . . oscount numeric numtosbytes numeric
packets, without further sampling. The datasets contaim flo| tcpfiags text srcinnet {0,1}
records from approximately 40,000 ISP network endpointp dstinnet {0.1}

gathered at two sites, representing several hundred Tesby

of network traffic. No endpoint is represented at both sites. . L .
Serving as theground truth for both training and testing be labeled by the dominant application class. Thereforhen t

purposes, the flow records in the data set are annotated V\zﬁgjsz}?;begl,?f;;]: “peaszeer \tNe g:!ggf?nﬁ?cr:nteerg]blappl.m“
a number of broad “application clastbels which are then ge yp 9 Y, g

sed to defineedge typesor edge label representing the the term that best suits the context. We note that although in

zom'nant al I'cagtl'onybpet cen tgo end o'nts S'm'l:iwgto] [1Oterms of the number of flows in the corresponding dataset,

! ppiicat W W points. Simi ’ We Fi | eShari ng and Wb flows are of roughly similar
[11], the labels are generated in an automated way by the : . .

: . roportions, there are far mofé | eShar i ng edges(75%)

measurement devices, using a set of packet-level rulesibase i : -

L . anW\eb (20%)edgesThis in fact is not surprising, as a) there

on combinations of packet signatures that operate on Iaygr

.) L re far more client endpoints than server endpoiatst b) a
4 packet header information, and layer-7 application otto Fi | eShari ng flow typically involve two client endpoints,

signatures. The flow records do not include any appllcatlc\),vrhiIe aWeb flow typically involves a client and a server.

data; neither do they report any user identity information. Finally, as part of the edge color inference problem, we

Motivated b_y the network managemgnt _tasks of the Iar%eugment each edge with an attribute set. The attribute set

ISP, we define twelve (12) broad application class labels, as= . : o)

. L used is a set oflow-leveltraffic statistics derived from flows

shown in Table I. We note that these 12 application classk?s
r

: . etween the two endpoints of an edge. These attributes are
are not defined uniquely by transport protocols and po :)
T ; listed in Table It. Duration, packetand byte represent the
numbers; i.e., there is no one-to-one correspondence batw

application labels and port numbers. For instance, whil&@PIT Fength of the flow, number of packets and bytes in the flow,

and TCP port 80 are often used by the four classes, VrvespectlveIyMean_packeL5|ze|s the average bytes per packet,

e : ; . .
separate the more specifiet News, Mul ti medi a (as well and mean packetrate is the average packet m_terarnval time
; oo in seconds. Thécpflagfeature contains all possible TCP flags
as someBusi ness) applications from generaléb accesses. . .
. : . in the packets. The TOS (type of service) related feattogs
Furthermore,Mil ti medi a and Busi ness may use port toscountand numtosbytesre the predominant TOS byte, the
numbers other than TCP port 80. y P yie,

The distribution of flows over the application classes r}lumber of packets that were marked with tos, and the number

of, .. : i
C of different tos bytes seen in a flow, respectively. The last
Table | is highly unbalanced. The largest two clas¥eés) and ._two featuressrcinnet/dstinne¢quals 1 if the source/destination

Fi | eShari ng, account for 60% to 80% of the total flows in :
different weeks, while the smallest classes (&Ngt,News and address belongs to the ISP network, and 0 otherwise.
SecurityThreat) contain only a few thousand flows outB. Colored TAGs: Definition and Properties

. 7) 0
of millions. In addition, a portion of the flows (29.4% of tbta Given the datasets, we now introduce the notioncok:

) o -
flows representing 19.9% of total bytesannot be classified ored traffic activity graph(or colored TAG in short) which

using the packet-based classifier, i.e., they do not matgh aenl'nbodies both the spatial disposition of traffic as well a&s th

B il Sbplcations use. A [, 3 TAG (vafc cty gray
’ P P egury bi-partite graph defined using the flows (with known class

threats for which signatures are not yet developed. We Cﬁall)els) from a specific time windo& (e.g., 1 hour or 1

these flowsUnknown, and exclude them from the datasetaay), and describes endpoint pairs represented in the flows.

used_ln our study,_ for. lack of ground truth. Formally, let’ H = ZH U OH denote the set of observed
Using the application class labels of the flows, we now

. :) endpoints, wherg&H is the set of all endpoints (hosisternal
examine how many pairs of endpoints generate only one ty%ethe ISP network, an@X is the set of endpoints (hosts)
of application traffic, i.e., whether all flows between theati f '

o . T) . externalto the ISP that exchange traffic with those Zii.

within a single application class. We vary the time W|ndow§ve first construct the upcolored TAG, G — (H,), as

for constructing the TAG from 1 hour to 1 day. We observ, Sllows: we include an edge,; in the’edge_ se'€’ it ’and
: i

that in all cases, even when extending the time window tQ . .
. : 2 only if we observe at least one flow between an internal

an entire day, for a predominant majority (nearly 99.5% %{ d external endpoints pait; € ZH andh; € OH. (For

more) of the edges, all flows between the two endpoints P? P P J '

S . o opological reasons the dataset does not include any flows
an edge fall within a single application class. Thus the ed .) :
. ; . xchange between pairs of internal nodes). We then define
can be assigned a single label. Further analysis shows tha

ever! among the remaining edges with flows belong'ng t01The features marked (*) are not reported directly in the flesord, but
multiple classes, one class dominates, and thus the edge @atputed from quantities thereof.

=
. C]Jﬂl

Mail

Pl Multimedia
NetNews

— — SecurityThreat

(a) all applications (b) Fi | eShari ng removed (c) Fi | eShari ng and\Web removed
Fig. 1. TAGs containing 2000 edges, where different appitioa are represented with different colors.

the colored TAG by coloring each edge of the TAG using thehe network and each edgg; < £ represents the aggregation
(dominant) application class label of the flows between tioé# all traffic between the endpoints; and ;. In our edge
two endpoints of the edge. Formally, for each edgec £, label inference problem, we assume that each edge &
we defineL(e;;) as the (dominant) application class labebelongs to one ofs pre-defined application classes, 1 <
associated with the edge. k < K (with K = 12). However, what class;; belongs to
As an example, Fig. 1[a] displays a (small) TAG constructeéd unknown and to be determinetlet L : £ — {Cy,1 <
using the first 2000 edges starting at 10AM on 05/03/2008.< K} denote the edge class mappinye;;) = Ci for
The dominance oFi | eShar i ng edges obscures most Wetsomek. Our problem is to infer this edge class mappihg
and other edges in Fig. 1[a]. In Fig. 1[b], we illustrate thgiven the unlabeled and the collection of the edge attribute
resulting colored TAGafter removingFi | eShar i ng traffic. ~sets,{x;; : e;; € £}. To solve this problem, we assume a
We now see that the Web edges now dominate. In Fig. 1[slypervisednachine learning environment, where we are given
we remove both th&i | eShar i ng andWeb traffic (the two a training dataset, i.e., a labelédconstructed from the traffic
dominant application classes) to better visualize theiapatwithin a certain time period) where the class of each edge is
distribution of traffic for less used application classes. given. The inference problem becomes the following leaynin
This small example helps illustrate several saliéstal problem: can one learn a functighwhich returns an estimate
properties of acolored TAG, which motivates théTAG edge of the edge class mapping each edge(Eq. 1)?
label inferenceproblem addressed in this paper. We see that -
the edge labels tend to be clustered together — where edges L(eij) = [(x5, L(ei.), L(e.5)) , (1)
incident on some nodes are all of the same color — and) . . .
hence regions of the TAG seem to have the same color. TE(hoere thetraffic featuresx;; contain the traffic statistics

seems to suggest that certain groups of hosts tend to gene e%g?heij; e.i".edj f % representF tr:e' fhdge_s ;]rg)mdr?ntdon
application traffic in a similar way (e.g., exchanging traffi'" an ose incident on;, respeclively, theneighbornoo

with the same set of web servers), thereby showing up wi aturesL(e;.) and L(e.;) are obtained through aggregation

the same color on the TAG. On the other hatwtal graph of the cor-res.,ponding edge classes. ,
structures do not appear to be indicative of the color of the Eq.(1) indicates that the edge label inference problem de-

edge clusters. For instance, many edge clusters have asinfENds not only on the traffic statistics on each edge but
“star-like” structure. but withdifferent colors. We also see ais0 on the collective distribution of all traffic exchangeith

many edges of different colors incident on the same noddi€ two endpoints:; and 7;, as reflected by the edge labels
These observations indicate that the spatial distributbn within a neighborhood of these two endpoints @nWithout

application classes can provide useful information foeirihg the knowle.d_ge _Og' the problem reduces to a classiuilti-
the edge labels. However, to utilize such information is |51-noCIaSS classificatioproblem, where one learrfsthat returns an

trivial task. In the next section, we formally define the edg8Simate of the edge label based purely on the traffic Statist

label inference problem and present our solution in Sedtion auributes, i.e..L(e;;) = f(w;;). The main question we are
interested in exploring in this paper is whether—dmuawthe

I1l. I NFERRING TAG EDGE LABEL spatial disposition of traffic embodied by the TAG can be
In this section we provide a mathematical formulatioﬁXploned in inferring the dominant application classesvaen

of the application inference problem, given an augmenté‘ﬂotherédpog‘ts't. Beflc\)/re wef_ |nttr(§>_duce t?he prcrpiozed tvlzo-step
(and initially unlabeled TAG, with a set of traffic statistics method in section TV, we Tirst discuss he related work.
attributes associated with each edge.
¢ B. Related Work
The problem of network traffic classification has been
Let G := {H, £} denote a particular TAG constructed ovewidely studied. Most solutions fall into one of the two gealer
a specific time period’, where denote the set of all hosts inapproaches (or a combination thereof): the signatureebase

A. Mathematical Formulation

approach using deep packet inspection, or statisticaliinee are obtainable only when the modél(eij) is known. In
learning based approach that utilizes only traffic stasstle- this paper, we propose a streamlined variant of the cldssica
rived from packet/flow-level header fields and timing inf@asm collective classification algorithm [18], which we call theo-
tion [5]-[7], [12]. All these solutions focus almost exdledy step model. Although the traditional collective classtiizca
on classification of packet- or flow-level traffic. At the othealgorithms are known to suffer from serious instability and
end of the spectrum, several recent studies [11], [13]-4i48g overfitting issues, in the application scenarios of thisquap
examined the problems of endpoint traffic characterizatiove found that our two-step model offers excellent resulte T
from on network traffic data as well as other informatiorschematic view of the training phase and the testing phase fo
Of particular interest is the multi-level traffic classifian the proposed model is depicted in Fig. 2.
scheme (called BLINC) proposed in [11]. Nonetheless, the The proposed model consists of two components. The first
goal of BLINC is primarily on characterizing the traffic ofstep, which we refer to abootstrapping treats structural
endpoints. To the best of our knowledge, our work is the firptoperties of the TAG (the neighborhood information of exjge
to advocate the analysis of “edge relations” between emdgoi as unknown and infers edge labels according to only the
and show it can be applied to the traffic classification pnoble traffic attributesx;; associated with each edge. The initial
In terms of analyzing spatial patterns from network trafficlassification from the bootstrapping step is in Eq. 2.
data, [16] uses host-level “communities-of-interest” (€as -
reference profiles for detecting propagation of malwaree Th Lo(eij) := folxi) @)
notion of traffic activity graphs (TAGSs) come from the two gqstrapping provides us with the initial labels for all
recent studies [8], [17] which investigate the propertiés Qqges though the accuracy of these labels depend on the
variousapplication-specifidAGs. In particular, [8] proposes a,\ajjaple traffic information in different application swios
novel nonnegative matrix tri-factorization (tNMF) methfit 5 hence can be inaccurate in certain situations. For deamp
decomposing spatial interaction patterns, and illussréf@w 5 e shall see in Section V, in the application of traffic
these interaction patterns discerned from applicati®eip |,ssification at the network layer where most traffic atiels
TAGs can be interpreted. Inspired by the findings in [8], iis th (e.g., port numbers, protocol number, etc.) are absent, the

paper we studgenericTAGs with mixed application classes, . racy after bootstrapping can only reach around 80%. In
introduce the notion oolored TAGs, and formulate the TAG 5 gydy where all flow level attributes are accessible, the

edge label inference problem and solve it effectively with t bootstrapping step can achieve an accuracy of over 96% [9].
proposed two-s_,tep modgl.) . The second step, referred to gsaph-based calibratioror
In the machine learning domain, the TAG edge label ing;jipration in short, incorporates the inherent neighborhood

ference problem has been recently studied under the te4y ocal properties of the edges in the TAG to re-enforce or
collective classificatiopwith techniques ranging from iterative .o _|3pel the initial edge labeling provided by the bootspiag

classification to Gibbs sampling (see [18] for an overviewgtep. For example, given an edge labele3asi ness and

In particular, iterative classification consists of appyiEQ.1 4| the neighborhood edges labeledvit, the calibration step

several times, using the previously computetk;;) as an 5y follow the edge clustering rule and change the edge label
approximate input. Compared to iterative classificationr 0,5 \wab. The calibration process is expressed in Eq. 3:
proposed two-step method is significantly simpler and works

very well for our problem, as we shall see in Section V. L(eij) :== f1 (io(ei-), io(e-j)) (3)

_ _ IV. METHODOLOGY _Why do we deprive classifief, from traffic featuresx;;?

In this section, we propose a novel two-step approach whighe explanation is that we want the classifier to focus on
employs the state-of-the-art machine learning algorithans e neighborhood features, which, for a given endpointy onl
solving the edge label inference problem using both traffigange slowly over time. This means that if we use the
attributes and neighborhood information in TAGs neighborhood features only, test data that has been aadlect
from the same graph as the training data (but later in timg) ma
_ still have a distribution that is close to the training da@m

Recall that for the edge label inference problem, Oyhe other hand, the traffic features suffer from a much greate
purpose is to find the edge label mapping(ei;) = time variability, and can become undesirable noise when one
f(xij, L(ei), L(e.;)), wherex;; is the vector of traffic at- pags access to neighborhood features. In a preliminary study

tributes associated with edge;, and L(e;.) and L(e.;) are e always obtain a higher error rate by incorporating traffic
the labels for the edges connected to both endpdintand features in the calibration step.

A. Two-step Model

h; of edgee;;, respectively. o _ In addition, we found that a single calibration step was
Direct learning of L(e;;) is difficult since it requires the enoyugh to obtain the best performance, hence the simplifi-
knowledge of all the labels of the neighborhood edges, whighQtion of the algorithm into a two-step approach. Therefore

) N o) from Eq. 3, the edge classification from the proposed model
We note that the model defined in this section is correspanttinthe

situation where only one label is associated with each eHgeever, the 1S eXprgsse_d as a combination of the pootstrapplng step and
proposed model can be easily extended for inference on-fabliied edges. the calibration step. We note that the inference on the class

Trattic attributes (observations)
g — o Predeton’
i gi jes f Lnput . output
Edge Trainingfor | -, Soognmentiuies f, e Initally | output |
. L S— ~ (using traffic labeled
labels Bootstrapping ¥) - TAG)
(ground truth) attributes X; only) i _ Predicted
|:> Bootstrapping |:> Calibration |:> labeled
@ Initial labeled TAG LG TG
L (G) T Unlabeled o L)
0 Edge labef calibration TAG G & traffic
Training for e, rules f) (using statistis x_
TﬁG . Calibration | labeled neighborhood 9 £, 4 £
(observations) info. L (e,) and L (¢ ;) - il i v
in TAG]:U(G)) Inmallgdg‘e label que Ial;el calibration
I: i (i) I: € C|aSSIfIEatIOn using neighborhood
A A e e using X, information injheinilial\y
Y ! labeled TAG L, (G)
Final learned rules
(a) Training phase (b) Testing/operating phase

Fig. 2. Architectures for training and operating of the megd two-step model.

of a particular edgez;; is based on the initial (inaccurate)More specifically, for an edge;;, let |C| denote the number
classification of the neighborhood edgé(e;.), Lo(e;)) of edges connected tg which are labeled a€, 1 < k < K.
from the bootstrapping step. Therefore, the training of th&ke then defineK features corresponding to the neighbor-
calibration functionf; also depends on the initial classificatiorhood edges connected to the endpdiptas |Cy|/ >_; [Cjl,
provided by the functiory, in the bootstrapping step, insteadepresenting the percentage of edges connectéd toat are
of depending on the ground truth. In the following, we discudabeled asC}. Similarly, we definek features to encode the
the training and operating of the proposed two-step model.neighborhood edges connecteditp In addition, we include
. . the degrees of; andh; as two additional features. Therefore,
B. Training and Operating the Two-step Model for K = 12 (the number of predefined application classes
Taking advantage of the ground truth that we have for the Table 1), we create a total of 26 features to encode the
network flow data, we formulate both the bootstrapping stefeighborhood information of individual edges. Despiteltiss
and the calibration step as classical multi-class classific of structural information, encoding objects as histogrdras
problems. Hence, the bootstrapping functifgnand the cali- enabled a fast deployment of machine learning solutions to

bration functionf; correspond to two multi-class classifiersmany real world problems, with surprisingly good results.
and we apply the state-of-the-art machine learning teatesq

to learn these two classifiers and hence to solve the edgk labe Implementing the Two-step Model

inference problem. In this section, we discuss the details of implementation
Overall Training and Operating Architecture. The training and training of the two classifiergy and f;. We usef, as an
architecture is presented in Fig. 2[a]. Given the grounthtruexample for illustration, since, is implemented in the same
of edge labels in the training data, we first learn a multsslaay and only differs in the selected feature set.
classifier fo, which maps traffic features;; correspondingto pye to the huge amount of data during both training and
each edge;; to the initial labelingLo(e;;). We then generate testing in the application of network traffic classification
initial labeling for the entire TAG,Lo(G) and learn the compared to a direct training of #&-class classifier, the
classifierf; for the calibration step, which maps initial Iabelingdecoup|ed approach, i.e., trainifgbinary classifiers and then
to the true labeling based on the labels of the neighbors fsembling them for thé(-class classification, has shown
individual edges. to be superior in both accuracy and scalability [9]. In this
After |ea.rning two C|aSSifier$0 andfl, at the Operating time paper, we adopt the same decoup|ed approach for bu|%|ng
(Fig. 2[b]), given a TAGG created from the test dataset, wen particular, we traink binary classifiers, corresponding to
first apply fo to obtain the initial labeling for all the edges ing posterior probabilities,P(Cy|x;;), wherel < k < K.
the TAG, namely,Lo(G). We then encode the neighborhoogiven such a model, we then compare th& posterior
information of all the edges into histograms and apply thgropabilities, and assign the example to the class (label)
classifier f; for the calibration purpose, which will producefo(eij) = argmaxg, P(Ck|x;;). In the ideal case, this as-
the final prediction.(G) after calibration. signment exactly corresponds to the Bayes optimum for the
We note that these two classifierf, (and f1) only differ muylti-class classification problem [19].
in the feature setsfy, uses traffic features associated with e implement thek’ (K = 12) binary classifiers using the
individual edges. The available traffic features depend AHaboos{20] algorithm, which applies a greedy incremental
specific applications scenarios. \We next explain how to €ecoypproach that can be restricted to learn a limited number
the neighborhood information as features for construcfing of features (with implicitZ; regularization). The output of
Encoding Neighborhood Information for Graph-based Adaboostclassifiers are further remapped to approximate
Calibration. Given the fact that an edge may have an umR?(C%|x;;), using univariate logistic regression [9]. To strike
bounded number of neighborhood edges connected to the enalance between accuracy and scalability, we choose the
nodes, we encode the neighborhood information as histagrastecision stump (the simplest decision tree, having ond)leve

as the weak learner. In the previous studies, this clasifier Fig. 3 displays the overall accuracy for the four experirment
proved to attain the best scalability while having an accyuramentioned above. We observe that the classification acgurac
comparable to sophisticated non-linear classifiers [9]. using one-hour time window varies between 79.5% and 83.3%
after bootstrapping possibly due to the fluctuation of tcaffi

mix due to the time-of-the-day effect. However, in all cases

In this _S?Ct'on' we evaluate the proposed two-step moqﬁE accuracy increases substantially to around 90% afeer th
for classifying traffic at the network layer. All the metrics

¢ luati based X p | a;rgph—based calibration. When the length of the time window
or evaluation are based on counting edges. For example, Ngoys to one day, we have access to both more edges, and

accuracy is defined as the number of correctly classifiedsedgﬁore accurate traffic statistics (especially for smallefic
divided by the total number of edges. classes). In this case, the accuracy for the bootstrappéng s
TABLE Il increase to 84%, and, again, the calibration step improves
EDGE TRAFFIC FEATURES DERIVED FROM BASIC FLOW FEATURES . .
the accuracy to 91.3%. This means that by applying the

V. EXPERIMENTAL RESULTS

Name Type Name Type graph information, we can reduce close to 50% of all the
min_duration | numeric max_duration | numeric classification errors made by the bootstrapping step!
min_pkt_size | numeric max _pkt_size | numeric . ST .
min_pkt_rate | numeric (*) | max pkt_rate | numeric Per-Class F1 ScoreWe next zero-in on individual traffic
symmetry numeric classes to evaluate how the calibration step improves the pe

class classification accuracy. Due to the highly unbalanced
ffic class distribution, the error rate for smaller tafflasses
2 generally small and hence hard to compare. We instead
e the F1 score which is defined as the harmonic mean of
ecision and recall. The F1 score ranges between 0 and 1,
nd a higher F1 score indicates a better classificationtresul
S’Fig. 4 displays the F1 scores for different traffic classes
. . S the whole-day data set. The traffic classes are ordered
externa]), flow packets, bytes and duration. In particutere decreasingly by the F1 scores before calibration. Obwousl
are no fields that related to the transport layer, such asqubt the F1 scores are increased for all the traffic classes after

p_ct>rr1t numbr(]ars or chl)i bytkest. Howevebr, c:;he_r fl(;)vk\)/ fe?jtg_res Ylibration. This indicates that the enhancement of theadve
either unchanged, likpackets or can be derived by adding aaccuracy is not an artifact of the accuracy improvement of

cons_tant length of th_e outer header, ligtes , a few large traffic classes, lik#b and Fi | eShari ng,
Prlor_ to bootst_rapp_lng,_we aggregate the traffic flows aSSOfilstead, it is the result of a universal accuracy increase fo
ated with each direction in an edge between two endpoirds ”}}II traffic classes. Even when the F1 scores are low or close

?se_t Ofl etdgti Iev;l trtaﬁ]:ilfeatures, dI|S;ed m(;l'abr:e Ilbllj'dpelr_rr C zero for certain classes before calibration, suciClaat
0 simuiate Ine etiect of Tiow records formed when nd FTP, the calibration step can still significantly improve

ports ar(te nﬂot ava|IabcIie fc;rtft]he flow key, we f|r§t dterppo:_all Bper-class F1 scores. This demonstrates the effectiserie
aggregate flow records of the same source and destinatio aph-based calibration which infers the colors of suchesdg

address, using a 30 s_econd i_nact_ive timeout. This don_e, oqely based on the structural properties in TAGS.

then compute the traf_flc duration (i.e. sum of f_Iow durz_;\tlon emporal and Spatial Stability. In practice, temporal and
the average packet size, the average packet inter-arat@l fspatial stability is an important requirement for a traffic
for the bi-directional traffic on each edge separately. Thgsssification system. Temporal stability means the syst@m
min_duration and max duration represent the minimum andpe trained once and run without human intervention for a long
the maximum traffic durations of the bi-directional trafficijme period. Spatial stability means the system can bedcdain
Similarly, themin_pkt_sizeandmax pkt sizeare the minimum 4t gne site and run at a second site without re-training.

and the maximum average packet sizes;rtig pkt rate and e evaluate the stability of the proposed method using data
max pkt rate are the minimum and the maximum averaggets collected at two geographically separated sites fer on
packet inter-arrival rates. We define tegmmetryof an edge year. The training data is from 05/03/2008 10-11AM and four
as the minimum number of bytes divided by the maximumne-hour datasets for the temporal stability test are wskith
number of bytes of the bidirectional traffic. are 2 days, 1 week, 1 month and 1 year later from the time
Overall Accuracy. Our first evaluation focuses on the overallvhen the training data is collected, respectively. In addijt
classification accuracy. We use a one-hour data set (frame use a one-hour dataset collected at the second site where
05/03/2008 10-11AM) to train both the bootstrapping steghere is also a one-month gap between the training data and
and the calibration step. We then evaluate the accuracytbé test data. We note that all the test datasets are fronivb-7P
the two-step model at different times of the day, using threg the corresponding day.

one-hour data sets from 05/05/2008 (2-3AM, 11-12AM and We first observe that the bootstrapping step is very stable
6-7PM). For a larger scale evaluation, we also usewlnele- across time and space. Within one month time period at the
day training data from (05/03/2008) and use the entire daame site, the calibration process consistently redueesrtor
data from (05/05/2008) for testing. rate by 50% and boosts the accuracy from around 80% to

Bootstrapping. As motivated in Section |, our evaluationtr
focuses on the worst-case scenario where both the netwoy
level header and transport layer header are absent (eegy.,
IPSec traffic where the entire IP packet is encrypted).

simulate this application scenario with existing flow datas

evaluation uses only basic features from the flow recor
namely, IP addresses (which are attributed as internal

= Bootstrap Calibration W Bootstrap

Calibration

M Bootstrap Calibration

95%

90%

85%

F1 Score
oooooo000
chbwARGIRER

Edge Accuracy

wdrr

2-3AM

SO P (@ 80 o
Y [\.(_\@ 8
((\\z “\\; <

10-11AM 6-7PM wholeday

r R ° \4 >
& & G\@“ W «\@2’
W \s“\d 2 day

I3 site 2

80%
75%
70%

Edge accuracy

1 month

1week 1month

1year

Fig. 3. DNS failure graph properties

Fig. 4. F1 scores for different traffic classes Fig. 5.

Stability of the calibration results

around 90%. The calibration step still reduces signifiganttraffic statistics and the graph-based calibration stejzesi

the error rate (by around 30%) after one year time period mherent neighborhood and local properties of edges in the
TAG to re-label or re-enforce the initial labels to achieve

Real-time Classification.So far, our evaluation is in an offline Much better accuracy. Using flow records from a large ISP

at the second site.

manner. However, the proposed method can also be impq@_twork, our evaluation results showed that the calibnattep
mented as a real-time system. The basic idea is to maintgfSistently reduced the error rate from the bootstrapgieg
a historical TAG for the calibration step. More preciselgt | Py 50% and improved the accuracy for all traffic classes.

T be the time window length to construct the TAG for the
calibration step. To classify an edgg in real-time att,, we
need to maintain the traffic statistics and neighborhooatsdg
of e;; in a past time window fronty — 7' to ¢.

(1]
g
(4]
(5]
(6]

Bootstrap ---- 1-hour calibration

1-day calibration

95%
90%
85%
80%
75% >
70%

Edge Accuracy

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

(7]

Time of the day (in 30-minute interval)

[8]
Fig. 6. Real-time classification results

Fig. 6 shows the real-time classification results, where thp]
z-axis represents the index of 30-minute time intervals ef th
day (05/05/2008) and thg-axis is the edge accuracy for thegq
corresponding 30-minute time interval. We use a one-hour
dataset from (05/03/2008 10-11AM) to train the system ar!
apply T = 1 hour andT = 1 day to illustrate the impact of [12]
the history length on the calibration performance.

From Fig. 6, the calibration performance is persistent a {JI
reduces the error rate by at least 50% throughout the day. &]
low accuracy after bootstrapping usually leads to a low accu
racy after calibration, however, the fluctuation of accyraiter [14]
calibration is not as significant as the one after bootsirepp
This indicates the calibration also helps the whole system [tL5]
achieve a more persistent classification accuracy. In iaddit
a longer history for calibration increases the overall agcy

. [16]
by 3% in general.

VI. CONCLUSIONS [17]

In this paper, we proposed a two-step supervised model
which utilizes collective traffic statistics in the traffictavity [18]
graphs (TAGs) for solving the application inference proble 19]
at the network layer, where the available traffic features a[r
limited. The bootstrapping step provides initial labelsffic [20]

REFERENCES

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexfoand
F. True. Deriving traffic demands for operational ip netvgorkethod-
ology and experiencel EEE/ACM Trans. Netw.9(3):265-280, 2001.
Port numbers, http://www.iana.org/assignmentshpornbers.

D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. &&n Routing
Encapsulation (GRE). RFC 2784, 2000.

S. Kent and K. Seo. Security architecture for the intepretocol. RFC
431Q December 2005.

A. W. Moore and D. Zuev. Internet traffic classificationing bayesian
analysis techniques. IRroc. of ACM SIGMETRICS'Q3005.

H. Jiang, A. W. Moore, Z. Ge, S. Jin, and J. Wang. Lightnig
application classification for network management. Rroc. of INM
'07, 2007.

J. Erman, A. Mahanti, M. F. Arlitt, I. Cohen, and C. L. Wémson.
Offline/Realtime traffic classification using semi-supsed learning.
Perform. Eval, 64(9-12):1194-1213, 2007.

Y. Jin, E. Sharafuddin, and Z-L. Zhang. Unveiling coretwerk-
wide communication patterns through application traffitvitg graph
decomposition. IrProc. of SIGMETRICS 'Q9pages 49-60, 2009.

Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.Ahang. A
modular machine learning system for flow-level traffic cifisation in
large networks. Technical report, 2009.

P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACASowated
construction of application signatures. Broc. of MineNet 2005.

T. Karagiannis, K. Papagiannaki and M. Faloutsos. BCiNultilevel
traffic classification in the dark. IRroc. of ACM SIGCOMM2005.

T. Nguyen and G. Armitage. A survey of techniques foreinet
traffic classification using machine learninfommunications Surveys
& Tutorials, IEEE 10(4), 2008.

K. Xu, Z.-L. Zhang and S. Bhattacharyya. Profiling Imter backbone
traffic: behavior models and applications. Pmoc. of ACM SIGCOMM
August 2005.

I. Trestian, S. Ranjan, A. Kuzmanovi, and A. Nucci. Unstrained
endpoint profiling (Googling the Internet). Proc. of ACM SIGCOMM
'08, Seattle, USA, 2008.

M. lliofotou, M. Faloutsos, and M. Mitzenmacher. Exjpiog dynamic-
ity in graph-based traffic analysis: techniques and apties. InProc.
of CoNext'09 2009.

P. McDaniel, S. Sen, O. Spatscheck, J. Van der Merwe, Bl
and C. Kalmanek. Enterprise security: a community of irseteased
approach. IrProc. NDSS$2006.

M. lliofotou, P. Pappu, M. Faloutsos, M. Mitzenmach#r, Singh, and
G. Varghese. Network monitoring using traffic dispersioapdrs (tdgs).
In Proc. of ACM IMG 2007.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagherd an Eliassi-
Rad. Collective classification in network datal Magazine 2008.

R. O. Duda, P. E. Hart, and D. G. StorRattern Classification Wiley-
Interscience, 2000.

R. E. Schapire and Y. Singer. Boostexter: A boostingeolasystem for

class assignments) of the edges purely based on available Xt categorizationMach. Learn, 39(2-3):135-168, 2000.

