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ABSTRACT
Campus or enterprise networks often have many unassigned
IP addresses that collectively form IP gray space within the
address blocks of such networks. Using one-month traffic
data collected in a large campus network, we have monitored
a significant amount of unwanted traffic towards IP gray
space in various forms, such as worms, port scanning, and
denial of service attacks. In this paper, we apply a heuris-
tic algorithm to extract the IP gray space in our campus
network. Subsequently, we analyze the behavioral patterns
such as dominant activities and target randomness, of the
gray space traffic for individual outside hosts. By correlat-
ing and contrasting the traffic towards IP gray addresses and
live end hosts, we find the gray space traffic provides unique
insight for uncovering the behavior, and intention, of anoma-
lous traffic towards live end hosts. Finally, we demonstrate
the applications of gray space traffic for identifying SPAM
behavior, detecting malicious scanning and worm activities
that successfully compromise end hosts.

1. INTRODUCTION
In this paper we apply the novel notion of IP gray space

analysis [1] to monitoring, identifying and tracking suspi-
cious activities in a large campus network. IP gray space
analysis is motivated by the observation that within a typ-
ical (large) campus/enterprise network which owns one or
multiple address blocks (e.g., class B or /16 address blocks),
not all IP addresses are likely to be assigned to “active”
hosts (i.e., actual machines such as servers, desktops, lap-
tops, etc.) at any give time period. We refer to these IP
addresses within the campus network that are not assigned
to any host throughout a given time period, say, an hour or
a day, as “inactive” or gray IP addresses. In contrast, the IP
addresses within the same address blocks that are assigned
to hosts at any point within the time period are referred to
as active IP addresses. The inactive IP addresses collectively
form the so-called IP gray space within the address blocks,
while active addresses the active space. By definition, IP
gray and active space within a campus/enterprise network
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are time-dependent – in other words, they are not fixed and
vary over time.

Unlike the well-studied IP “dark space” analysis tech-
niques (see, e.g., [2, 3, 4, 5, 6, 7, 8, 9]) which are inher-
ently ex situ and can potentially be evaded [10], IP gray
space analysis is in situ and provides us with a direct means
to monitor, identify and track suspicious and potentially
harmful activities launched by outside hosts. In particular,
we can observe the traffic generated by outside hosts to-
wards both the IP gray space and active space of a network,
and correlate them to infer the nature of activities engaged
by the outside hosts and isolate potentially harmful ones.
After all, it is live hosts (behind active IP addresses) that
outside attackers are interested in! In [1] we developed a
simple heuristic algorithm for extracting the IP gray space
within a campus/enterprise network, and applied IP gray
space analysis for dissecting and classifying various scanning
activities.

Built on the study in [1], this paper focuses on the de-
velopment of a novel three-step methodology for identifying
and tracking potentially harmful hosts by correlating traffic
towards both IP gray and active spaces of a campus network.
Using the traffic towards the IP gray space, we first extract
a candidate set of potentially suspicious outside hosts, and
infer the dominant destination (or source) ports seen in the
traffic towards the IP gray space that are used by an outside
host for scanning, worm infection or other attack activities.
Using these dominant ports, we then extract all the relevant
scanning and other suspicious traffic towards both gray and
active inside hosts. (This first step is described in more de-
tails in [1].) In the second step we zero in on and further
extract bad scanners and focused hitters with likely harmful
activities (from the candidate set of potentially suspicious
outside hosts) by analyzing the target “footprint” of dom-
inant suspicious activities and correlating them with other
flows generated by these hosts towards live hosts in active
space. In most cases, these other flows cause security con-
cerns, since they could reflect harmful activities from outside
hosts, such as follow-up behaviors after successfully compro-
mising an inside host. In the third step, we track all flows
generated by these bad scanners and focused hitters before,
during and after the (detected) dominant suspicious activi-
ties, and perform an in-depth analysis of these flows through
a variety of means including inference using evidences ob-
tained from other (possibly external) sources.

Using a month-long NetFlow data collected at our campus
border router, our investigation reveals that i) many bad
scanners successfully compromised inside end hosts, such
as infecting them with new worms; ii) a number of bad



scanners collects targets information for further exploit ac-
tivities, e.g., sending spam messages after locating active
SMTP servers or performing specific scanning after ICMP
probing. For focused hitters, we rely on additional informa-
tion and evidence, such as DNS lookup, behavior tracking,
active probing to obtain a plausible explanation. An impor-
tant finding is the prevalence of spam behaviors from outside
hosts. The majority of focused hitters are outside hosts that
persistently send spam messages to inactive mail servers as
well as active mail servers. Through querying a widely-used
spam database, we find nearly 80% of such hosts targeting
SMTP ports are indeed spammers. We believe the remain-
der are also very likely spammers, since they share strong
similarities with known spammers.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces the concept of IP gray space and
how we use IP gray space analysis technique to identify
potential harmful hosts and further classify them into bad
scanners and focused hitters. In Section 3, we examine the
behavior, strategies and potential threats of bad scanners.
Section 4 studies the behavior of focused hitters, in particu-
lar, the dominant spammer behaviors. Section 5 concludes
this paper.

2. IP GRAY SPACE ANALYSIS
In this section we first briefly introduce the definition of

gray IP address and our heuristic for obtaining the collection
of gray IP addresses – collectively referred to as the (IP) gray
space – for a given network. We then present our IP gray
space analysis technique, which utilizes the characteristics
of the IP gray space to identify potential harmful hosts.

2.1 Identifying IP Gray Space
Let I denote the collection of all IP addresses of a network

under consideration, and t0 the starting time of a time pe-
riod of interest, and T the length of the period. We say an
(inside) IP address g ∈ I is a gray (or inactive) address over
the time period [t0, t0+T ] if and only if no traffic originating
from g is observed during [t0−τ, t0 +T +τ ] for some fixed τ
1. We use G to denote the collection of all gray IP addresses
within the time period, or IP gray space. The complemen-
tary set, A = I −G, is referred to the active space. In other
words, for any a ∈ A, there is traffic originating from a at
some time during [t0−τ, t0 +T +τ ]; thus a is likely assigned
to an active host during the time period. In this study, we
set T to be 24 hours, t0 the zeroth hour of a day, and τ one
hour.

2.2 Characteristics of IP Gray Space
We apply the above heuristic to the NetFlow data col-

lected at the border router of the University of Minnesota
campus network during February 2006. The data set in-
cludes all unsampled traffic flows between inside hosts and
outside hosts during the entire month.

Our campus network owns three class B (1/16) IP ad-
dress blocks, with a total 3 × 216 = 196608 IP addresses.
Among these many IP addresses, we found that in each day
of Feb 2006 over 70% of the addresses are gray (“inactive”)

1In this definition, to be conservative, we also require no
traffic originating from g for a period of τ before and after
the time period of interest to provide additional assurance
that g is indeed unlikely to be assigned to any host over the
said time period
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Figure 1: IP gray space changes in one month

over the entire day (Fig. 1). Fig. 2 illustrates the distribu-
tion of gray IP addresses in the 256 /24 address sub-blocks
(“class C”) within one of the class B (/16) address blocks.
The x-axis represents each class C sub-block, while y-axis
represents each host in a corresponding sub-block. A point
on the graph stands for an active host on 02/06/2006. All
the blank space belongs to IP gray space. We observe that
are unevenly distributed among different /24 address sub-
blocks.

Figure 2: Distribution of gray IP addresses

Since no traffic is observed to originate from a gray IP
address to any outside host (in the rest of the Internet) for
an entire day, it is likely that the address is not assigned
to any live host during that day. Ideally one would expect
no traffic from any outside host either. This is in general
not true at all. We observe that within four hours from the
start (zeroth hour) of everyday, all gray IP addresses are
“touched” (i.e., as the destination IP of an incoming flow)
by at least one outside host! This is not surprising, because
without a priori knowledge of which IP address is gray or
active in a network, an outside attacker must perform some
kind of reconnaissance activities such as scanning to identify
vulnerable hosts or other targets of interest. Such activities,
in particular, when done randomly, would result in touching
the IP gray space with high probability given the large size of
IP gray space in our campus network. Hence gray flows are a
strong indication of likely suspicious activities, and the cor-
responding outside hosts that generate them warrant some
scrutiny. To study the activities of the outside hosts gener-
ating gray flows, our methodology consists of three steps as



explained below.

2.3 Extracting Outside Hosts Suspicious Ac-
tivities

Our first step is to identify the ports appearing repeatedly
in those gray flows from an outside host. Those ports, re-
ferred to as dominant scanning ports (DSP’s), represent the
likely services or exploits that the outside host is scanning
for. With those DSP’s, we then separate the scanning activ-
ities of the said outside hosts from other (if any) traffic from
the same host: this is done by excluding any incoming flow
from the outside host that does not use any of the DSP’s as
the corresponding source or destination ports (see [1]).

Let OS be the set of outside hosts that we are interested
in 2. For any h ∈ OS , let GF (h) denote the collection of
gray flows generated by h. The destination ports (dstPrt
in short) used by gray flows in GF (h) induce an empirical
distribution: for each dstPrt i, pi := mi/m where mi is
the number of gray flows in GF (h) with dstPrt i, and m
is the total number of gray flows in GF (h). We apply an
information theoretical metric – Relative Uncertainty (RU)
or standardized entropy [11] – defined below to the desti-
nation port distribution of h to identify dominant scanning
(destination) ports (if they exist):

RU(dstPrt) :=

−
P

i∈dstPrt

pi log pi

log m
∈ [0, 1], (1)

where −
P

i∈dstPrt
pi log pi is the entropy of the dstPrt dis-

tribution, and log m is its maximum entropy. We have
RU(dstPrt) ∈ [0, 1]. RU(dstPrt) close to 0 suggests one or
a few dstPrt’s dominate in the gray flows; while RU(dstPrt)
close to 1 signifies that there is no dominant dstPrt’s. Simi-
larly, we can define RU(srcPrt), for the source port (srcPrt)
distribution of GF (h). Hence RU(srcPrt) and RU(dstPrt)
allow us to determine the existence of DSP’s in the gray
flows of an outside host, and if they exist, identify them
using Algorithm 1 below.

Algorithm 1 Identifying Dominant Scanning Ports

1: Parameters: GF (h); β = β0;
2: Initialization: DSP := ∅;
3: compute pro. dist. Pprt and θ := RU(prt) from GF (h);
4: while θ ≤ β and |GF (h)| >= 10 do

5: find prti with highest Pprti
;

6: DSP := DSP ∪ prti;
7: remove flows associate with prti from GF (h);
8: remove Pprti

from Pprt;
9: compute θ := RU(prt) from GF (h);

10: end while

Algorithm 1 presents a heuristic procedure for extracting
DSP’s from either the destination or source port distribu-
tion Pprt of host h ∈ OS (the same procedure applies to both
dstPrt and srcPrt). The algorithm starts with an empty

2We narrow our interest to those outside hosts with sus-
tained suspicious activities, i.e. the outside hosts that gen-
erate at least 100 incoming flows over a day, and 10% of
which are gray flows. Our analysis shows that a small por-
tion of outside hosts generate a large portion of gray flows.
For example, on 2/6/2006, although only 2% of the outside
hosts generate more than 100 flows, of which 10% touching
the IP gray space, they contribute to 98% of the total gray
flows

DSP set. It iteratively finds the port with the current high-
est probability, adds the port into DSP and removes all the
flows associated with it from GF (h). The algorithm termi-
nates when there are not enough flows left (|GF (h)| < 10)
or the ports in the rest of the flows are nearly uniformly
distributed (RU(prt) > β0, where we choose β0 = 0.7).

Using the algorithm, we extract dominant destination and
source ports for all outside hosts in OS . The DSP’s (Fig. 3)
include ICMP scanning (port 0), and well-known exploit
(UDP/TCP) ports such as 137,139,445,1025 and 1434 as
well as a few service ports such as 25,80,443.
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Figure 3: Top 20 DSP source ports and destination

ports

Using those identified DSP’s, we can separate incoming
flows into two categories: scanning flows and other flows.
Scanning flows are the flows associated with corresponding
source or destination DSP’s; while the remaining flows are
considered as other flows.

There are many reasons that a gray outside host produces
other flows. In many cases, these other flows can be part of
normal activities of the host, e.g. an outside host that inter-
acts with some inside hosts normally could be infected by
worms or other malware that generate the scanning flows.
In other cases, these other flows may cause more concerns,
as they could signify more harmful activities involving the
outside host, such as follow-up activities after successfully
compromising an inside host. It is these outside hosts with
potentially harmful activities that we will focus our atten-
tion on in the remainder of this paper.

2.4 Zeroing In On (Potentially) Harmful Out-
side Hosts

In the third step we propose an effective method to pick
out potential harmful outside hosts by correlating the scan-
ning flows and other flows generated by these hosts. For
h ∈ OS, let As(h) denote the set of active IP addresses
touched by the scanning flows of h (i.e., they appear as
the destination IP (dstIP) addresses of the scanning flows
in SF (h). Let Ao(h) denote the set of active IP addresses
touched by other flows of h, namely, the set of dstIP’s in
OF (h). We include h in the candidate set of potentially
harmful outside hosts, denoted by OH , using the following
simple criterion: h ∈ OH if and only if As ∩Ao 6= ∅, namely,
there is an active IP address that is touched by both scan-
ning flows and other flows. The intuition behind is that if
activities embodied by the scanning flows and other flows are
uncorrelated, they likely involve distinct inside hosts. When
they touch the same inside hosts, it is highly probable that
they are correlated, thus such hosts warrant additional spe-
cial scrutiny.

Using the flow data of 02/06/2006, out of 7468 outside
hosts in OS, there are only 284 outside hosts with scanning
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Figure 4: OH classification and the properties of bad scanners and focused hitters

flows and other flows both touching the same active IP ad-
dresses inside our campus network, namely, |OH | = 284.
In the following, we examine the behavior characteristics
of these hosts from several perspectives. First we investi-
gate these hosts based on the suspicious flow activities, in
particular, the following two questions: i) how many inside
hosts (gray or active) are touched by the scanning flows of
each host in OH? and ii) how varied are the inside hosts
being touched, e.g., whether each host being touched once
or repeatedly? The first question tells us the size of the
“footprint” of the suspicious activities of the outside host,
while the second provides some clue on the nature of the
suspicious activities.

For the first question, we count the number of distinct
inside IP addresses (i.e., dstIP’s) in SF (h) for each h ∈ OH .
For the second question, we measure the relative uncer-
tainty (RU) of the dstIP’s of flows in SF (h), RU(dstIP ),
defined using eq.(1), where for each dstIP i, pi equals the
relative frequency (or probability) of i (the number of flows
in |SF (h)| with i as dstIP divided by |SF (h)|). Fig. 4[a]
plots the number of distinct dstIP’s vs. RU(dstIP ) for
each h ∈ OH . Except for one outlier, the points on the
plot are grouped together. By applying a simple cluster-
ing algorithm, we obtain two separate clusters. One cluster
consists of the points in the left lower corner which have
low RU(dstIP )’s, and touch a small number of inside hosts.
The points of the right (upper) corner form the second clus-
ter, which have a relatively large number of distinct dstIP’s
and high RU(dstIP )’s. The outlier is caused by a mixed
behavior in which an end host randomly performs ICMP
probing, while simultaneously sends legitimate web traffic.
We refer to the first group as focused hitters and the second
bad scanners (while the third mixed intruders). There are
totally 101 focused hitters, and 150 bad scanners. We will
focus mostly on these two groups.

To further understand the behaviors of focused hitters
and bad scanners, we examine the number of gray and active
hosts that they touched as well as the number of flows sent to
gray hosts. Figs. 4[b] compares the number of unique active
hosts vs. gray hosts touched by SF (h). Clearly, the points
of the bad scanners are around the line, y = 0.7x, where
0.7 is the average gray ratio of the 3 class B networks (the

total number of gray addresses divided by the total number
of active addresses in the campus network). It indicates
that the bad scanners randomly choose the SF (h) targets.
On the other hand, the focused hitters have much low gray
ratios as they only access a small number of gray hosts. In
addition, Fig. 4[c] shows the difference between the number
of unique gray hosts accessed by SF (h) vs. the average
number of SF (h) towards each gray host. For bad scanners,
they send one or a few flows to each gray hosts, which are the
typical patterns of scanners. However, for focused hitters
we find that they tend to send tens or hundreds of flows to
each gray host, which indicate that these focused hitters are
likely unaware of the destinations becoming gray hosts. In
the next two sections, we will investigate these two groups
in depth.

3. BAD SCANNER ANALYSIS
In this section, we investigate the activities of the bad

scanner group identified earlier and try to assess the poten-
tial threats they pose to the campus network by correlating
the scanning and other flow activities as well as resorting
to evidences gleaned from additional sources (such as DNS
records, active probing). We use the flow data of 02/06/2006
as an example to illustrate the results. Based on analysis
of the scanning flows and other flows to the common (in-
side) IP’s that a bad scanner touches, we can roughly divide
the 150 bad scanners of 02/06/2006 into the following sub-
groups for each of which we perform a more in-depth analysis
below:

i) The first sub-group includes bad scanners that employ
ICMP probes in their dominant scanning activities, and
upon receiving responses to the ICMP probes from live hosts
(from the active space), they follow up with TCP/UDP
scanning activities (seen in their other flows). On 02/06/2006,
48 (33%) out of 150 bad scanners belong to this sub-group,
and nearly all of them are searching for well-known service
ports such as ports 22, 25, 80. By examining these further
scanning activities, we find that these bad scanners receive
few successful responses from live inside hosts. This is not
surprising given that most hosts inside the campus network
are client machines. For a few inside hosts (servers) that re-
spond to the scanning activities, no further interactions are



observed. Although the bad scanners of this sub-group do
not seem to pose any immediate threat, they still warrant
to be tracked for possible future activities.

ii) A bad scanner in this sub-group scans using TCP/UDP
probes on a variety of ports, many of which are exploit or ser-
vice ports; furthermore, after responding to the TCP/UDP
probes, a few live inside hosts in return initiate an ICMP
ping or a TCP connection request on port 113 (the IDENT
protocol) to which the scanners respond back. Out of 88
bad scanners in this sub-group, 77 receive an ICMP ping in
return upon being scanned from a total of 32 inside hosts.
Comparing with the other active inside hosts, these 32 in-
side hosts are being scanned by the bad scanners more than
8 times on average, compared to the average of 1-2 times
for the other active inside hosts. Furthermore, these active
inside hosts are being scanned on a variety of ports includ-
ing service, exploit, and high TCP/UDP ports, to which
they all respond successfully. The corresponding names of
these 32 inside active IP’s (via reverse DNS lookup) reveal
that they are names for DHCP assigned machines (in dormi-
tory and other non-departmental subnets); none of them are
servers (although some respond to port 25, 80 when scanned
on these ports). Further inspection of activities from both
these inside hosts and the bad scanners that touch them
seems to suggest that the client machines behind these 32
inside IP addresses may be infected with malware, or even
part of a botnet. We are still conducting on-going analysis
and tracking of these hosts (both inside and outside).

The other 11 bad scanners in this sub-group trigger the
inside hosts scanned to initiate a TCP connection request
on port 113. All of them are scanning for service ports 22,
23 and 25. Analyzing the DNS names of the inside hosts (a
total of 804 hosts) that initiate the TCP port 113 connec-
tion requests in turn, they are Unix or Linux machines in
computer labs in Computer Science or other engineering de-
partments, which are configured with the IDENT protocol
to “identify” any user who accesses these ports. No other
flows (except for the response to the IDENT request) are
initiated from these bad scanners, suggesting that they are
not able to pursue any further activities. Most interestingly,
for the 3 outside hosts that scan for port 25, a query of their
IP addresses in the spammer database [12] reveals that they
are listed as known spammers.

iii) The third and last sub-group include 11 bad scanners
that also scan using the TCP/UDP probes and receive re-
sponses from some live inside hosts; furthermore, they also
have other TCP/UDP connections with these live inside
hosts that are initiated by them. Correlating the scanning
activities with other activities (as indicated by the flows in
OF (h)), we find that most of the other connections initi-
ated by these bad scanners occur after the scanning activ-
ities (SF flows) – suggesting possible follow-up activities;
while a couple of them occur beforehand, as possible pre-
cursor activities. In one case the scanning activities occur
during a series of connections between a bad scanner and
a live inside host. Detailed investigation of this latter case
suggests that a hacker from Romania has likely broken into
this inside hosts, make a series of connections on TCP ports
4489, 17864, and 80, which lasts about 9 minutes. In the
midst of these suspicious activities, he/she also launches a
TCP port 80 scanning which also touches the inside host
he/she has broken into. In the two bad scanners with the
precursor activities, they are performing queries to an in-
side DNS server, and then launch scanning for TCP port

80. The remaining bad scanners in this sub-group are en-
gaged in some kind of follow-up activities. Further investi-
gation of the scanning and subsequent follow-up activities
of these bad scanners strongly suggests that these bad scan-
ners have successfully compromise or infiltrate some inside
hosts. For example, one bad scanner from Japan performs
sequential scanning on TCP port 445, UDP port 1023, TCP
port 5554 and TCP port 9898; 96 inside hosts respond to
the TCP port 9898 scanning. The bad scanner then pro-
ceeds with TCP connection attempts with these hosts on
TCP port 8967, with successful connections with 6 of them.
Such traffic patterns exactly match the signature of the re-
cent Sasser worm [13]. In another case, a bad scanner scans
on UDP port 38293, and upon receiving responses, follow up
with connections on various UDP ports as a part of worm
infection process.

4. FOCUSED HITTER ANALYSIS
We now turn our attention to the focused hitter group.

We first examine the DSP’s of the focused hitters and sep-
arate them into sub-groups of likely similar behaviors. We
then perform an in-depth analysis of the focused hitters in
each sub-group, often relying on additional information and
evidences from other sources, and thereby attempt to infer
the nature of activities these focused hitters are engaged in
– in particular, obtaining a plausible explanation for why a
focused hitter touches the gray IP addresses.

In general, we find that DSP’s of focused hitters typically
belong to a small number of applications, especially, SMTP,
Web and peer-to-peer. For example, using the 02/06/2006
data, out of the 101 focused hitters, 69 target the destination
port 25, namely, attempting to access email servers, while
while 12 target the web service ports, 80 and 443, and 3
target the destination ports such as 6881 (BitTorrent) and
6364 (Gnutella) that are typically associated with peer-to-
peer applications, 4 targets X windows service port 6000,
while the rest of 13 focused hitters target various high ports.

We first perform an in-depth analysis of the biggest sub-
group, the 69 focused hitters that attempt to access email
servers. There are two likely explanations for why these out-
side hosts repeatedly access the IP gray space: the inside
hosts (email servers) are temporarily down or the outside
hosts are spammers. The 69 focused hitters access a total
of 19 gray IP addresses, each touching multiple gray ad-
dresses, often repeatedly throughout the day. We perform
a DNS look-up (with MX option) of these 19 inside gray IP
addresses: all of them have a legitimate DNS record and the
associated MX record indicates that they are email servers,
although only a few have “mail” in their DNS names. Fur-
ther investigation on flow data reveals that except for one,
18 stay gray throughout the entire February, indicating that
they are likely old email servers that have been taken out
of service, however their DNS records have not been up-
dated. The persistence of the 69 focused hitters in access-
ing these likely out-of-service email servers strongly suggests
that they are likely email spammers who have harvested
DNS records for email servers. To confirm this, we query a
widely-used online spammer database [12], and find that 48
out of these 69 outside hosts are listed as known spammers
in the database!

For the remaining 21 hosts (referred to as unknown hosts
hereafter), we conduct a detailed comparative analysis be-
tween these hosts and the known spammers such as DNS



Table 1: Feature similarity of known spammers and unknown hosts
Type no. MX records open port 25 receive SMTP traffic avg. active hosts accessed avg. gray hosts accessed

Spammers 48 20 28 7 12.1 1.4

Unknown hosts 21 13 18 7 16 1.6

MX records, active port 25 probing, patterns of unique gray
and active IP addresses touched, email traffic temporal fre-
quency and reciprocity (i.e., whether they receive email traf-
fic from inside hosts) analyses. Some of the results are sum-
marized in table 1. The third column (“MX records”) shows
that 20 of 48 known spammers are listed as email servers
based on DNS MX record look-up, while 13 of 21 unknown
hosts are. The fourth column (“open port 25”) shows that
28 of 48 known spammers accept telnet connection prob-
ing on port 25, while 18 of 21 unknown hosts also do. 7 of
48 known spammers receive SMTP traffic from inside hosts,
while 7 of 20 unknown hosts also do (Column 5 “receive
SMTP traffic”). The last two columns show the average
active and gray IP’s touched by known spammers and un-
known hosts. These comparative analyses lead us to believe
the 21 unknown hosts are very likely spammers that have
not been included in the spammer database.

For the 12 hosts targeting web service ports (80, 443),
we also perform a DNS look-up of the gray IP addresses
touched. Surprisingly, all of the gray hosts correspond to dy-
namic hostnames containing “dial-up”, “wireless” or “dhcp”.
A detailed analysis on the traffic of these gray hosts before
or after 02/06/2006 reveals that unlike typical web servers
these hosts provide temporally web service for a short time
duration. There are two possible explanations for this be-
havior. First, these hosts are likely compromised and con-
trolled by outside attackers who occasionally turn on web
services for file sharing or communications. Second, these
hosts might provide web services in small communities. For
both cases, we believe the behaviors of focused hitters are
likely suspicious and warrant further inspections. Analy-
sis of the hosts targeting the peer-to-peer ports suggests
that the outside hosts are peer-to-peer clients with stale peer
cache, attempting to access gray IP addresses that were at
one time dynamically assigned to inside users running peer-
to-peer applications (incidentally the address blocks touched
by these outside hosts belong to the student dormitory sub-
net.) Study of the remaining focused hitters targeting on
various destination ports seems to suggest that those hit-
ters have anomalous behaviors.

We have done similar analyses using flow data from other
days. Again we find that except for a number of peer-to-
peer clients that repeatedly touch the gray IP addresses (due
to stale peer cache), the majority of focused hitters tend
to be email spammers, active attackers. Thus using our
approach, we are able to zero in on these “bad hosts” and
thus subsequently monitor and track them for potentially
harmful activities.

5. CONCLUSIONS
With the IP gray space information extracted by applying

the heuristic algorithm in [1], we develop a noval three-step
approach for identifying and tracking potentially harmful
hosts by correlating their traffic towards both gray space
and active space. Using one-month traffic data collected
in a large campus network, we find i) many outside hosts
successfully compromised inside end hosts, such as infecting

them with new worms; ii) a number of scanners collects tar-
gets information for further exploit activities, e.g., sending
spam messages after locating active SMTP servers or per-
forming specific scanning after ICMP probing, and iii) hun-
dreds of spammers persistently send email traffic towards
inactive mail servers as well as active mail servers during
every day.
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