
Message-Efficient Dissemination
for Loop-Free Centralized Routing∗

Haldane Peterson
University of Minnesota

peterson@cs.umn.edu

Soumya Sen
University of Pennsylvania

ssoumya
@seas.upenn.edu

Jaideep Chandrashekar
Intel Research

jaideep.chandrashekar
@intel.com

Lixin Gao
University of Massachusetts
lgao@ecs.umass.edu

Roch Guerin
University of Pennsylvania
guerin@ee.upenn.edu

Zhi-Li Zhang
University of Minnesota

zhzhang@cs.umn.edu

ABSTRACT
With steady improvement in the reliability and performance
of communication devices, routing instabilities now contrib-
ute to many of the remaining service degradations and in-
terruptions in modern networks. This has led to a renewed
interest in centralized routing systems that, compared to
distributed routing, can provide greater control over rout-
ing decisions and better visibility of the results. One benefit
of centralized control is the opportunity to readily eliminate
transient routing loops, which arise frequently after network
changes because of inconsistent routing states across devices.
Translating this conceptual simplicity into a solution with
tolerable message complexity is non-trivial. Addressing this
issue is the focus of this paper. We identify when and why
avoiding transient loops might require a significant number
of messages in a centralized routing system, and demon-
strate that this is the case under many common failure sce-
narios. We also establish that minimizing the number of
required messages is NP-hard, and propose a greedy heuris-
tic that we show to perform well under many conditions.
The paper’s results can facilitate the deployment and evalua-
tion of centralized architectures by leveraging their strengths
without incurring unacceptable overhead.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms
Measurement, Control, Performance, Reliability

Keywords
Network architecture, Network routing, Network manage-
ment, Graph theory, Algorithms, Message complexity

1. INTRODUCTION
Motivated by the challenges of managing and control-

ling distributed routing decisions in IP networks, there has
recently been a renewed interest in centralizing important
parts of the routing function [7, 2, 14]. The goals of such
centralization are twofold. First is to simplify routing infras-
tructure by refactoring its function to minimize the expense
∗Supported by NSF grants CNS-0626617, CNS-0627004,
and CNS-0626808.

of distributed switches (forwarding elements or FEs). The
second goal is to make the network more responsive, man-
ageable, and flexible by placing complex decision functions
in a central resource, rather than composing them from dis-
tributed routing protocols.

This paper uses the term Centralized Routing Networks
or CRNs to refer to network architectures with centralized
routing decisions. For example, the 4D architecture [7]
replaces the path selection component of an IGP with a
Decision Plane running on a Decision Element (DE)1. This
architecture simplifies FEs by removing both the memory
necessary to store global network state and the processing
power to compute forwarding paths. It also enables more
sophisticated path computations, because paths need not
be calculated based on global coordination. All aspects of
path selection are under the sole control of the DE.

However, a centralized architecture is not a routing pana-
cea. There remains a gap between the inherently distributed
nature of the forwarding network of FEs and the centralized
decision element. In the 4D architecture, this gap is bridged
by a Dissemination Plane, a component to facilitate com-
munication between FEs and DE. Dissemination solves a
problem analogous to that solved by flooding in distributed
link-state IGPs: it distributes routing information about the
network from where it is observed or created to where it is
needed. But Dissemination introduces unavoidable commu-
nication delays between events in the network and decisions
at the DE to accommodate them, and further delays be-
tween those decisions at the DE and their implementation
on the FEs. These delays occur irrespective of how Dissem-
ination is realized, e.g., in-band or out-of-band.

This paper identifies several challenges that arise from this
architectural gap, and explores solutions to them. We focus
on design issues in the Dissemination plane and its interface
with the Decision plane. We pay particular attention to the
message complexity of Dissemination and its optimization,
including development of message complexity metrics.

1.1 Problem: Transient Forwarding Loops
A network is dynamic: nodes and links change state over

time, and those changes can force changes to previously se-

1For scalability, performance, and reliability it is likely that
a DE would be implemented as a distributed service across
multiple nodes spread through the network. The point of
the term “centralized” is that it is not implemented on the
FEs, which have a distinct set of architectural functions.

ACM SIGCOMM Computer Communication Review 65 Volume 38, Number 3, July 2008

lected forwarding paths. Modifying existing paths in re-
action to network changes introduces the potential for tran-
sient forwarding loops. Traffic is caught in a forwarding loop
when, after detecting and reacting to a network change, FEs
choose inconsistent next-hops that create cycles in source-
destination paths. This is a long-standing concern in large
operational networks, where loops occur frequently in prac-
tice [8]. There is a rich literature on reduction and elimi-
nation of forwarding loops, e.g., [6, 3, 5], existing routing
protocols that guarantee the avoidance of loops [1]; and on-
going standardization efforts [4] to augment existing proto-
cols with such a capability. Among this vast literature, [3] is
most relevant to the problem of avoiding transient loops in a
CRN, because of their focus on link-state routing protocols
that share a similar information and computational model
with a CRN (albeit one that is replicated across routers
rather than present only at the DE itself). As a result,
some loop avoidance techniques derived for link-state proto-
cols are readily applicable to a centralized routing setting.
In particular, [3] has shown that transient loops can be elim-
inated by imposing a specific order on updates of the For-
warding Information Bases (FIBs2) of FEs in the network.

The current literature on loop avoidance has a dual focus:
first, defining constraints on FIB update order that guaran-
tee freedom from loops; and second, developing implemen-
tations to enforce those constraints with minimal modifica-
tions to existing distributed routing protocols. Loop-free
FIB update ordering is a fundamental property of network
forwarding, and applies just as well to CRNs as to networks
routed with IGPs. However, implementation considerations
change substantially in a CRN. Techniques to coordinate
FIB updates with distributed IGPs rely on mechanisms that
are unnecessary and onerous in a CRN, and the central-
ized operation of a DE presents opportunities to simplify
and control the update process. The result suggests imple-
mentation approaches quite different from what has been
described previously in the literature. [5] deals with the im-
plications of a CRN but stops short of specifying loop-free
update orders.

Specifically, loop-avoidance solutions aimed at IGPs in-
volve two components: incremental adjustment of link met-
rics, and control messages to trigger updates. Both com-
ponents reflect the need for coordination of FIB updates
among FEs, and for minimizing modifications to existing
distributed routing protocols. But such constraints do not
apply to a DE, which operates on centralized computations,
and which need not be concerned with protocol compatibil-
ity because CRN protocols will, of necessity, be new. Fur-
thermore, given the stated CRN goal of minimizing the de-
cision making ability of FEs, the DE can define and enforce
the order in which FEs update their FIBs, and hence elimi-
nate the need for extensive message exchanges among FEs.

Consider a simplified, centralized approach to transient
loop avoidance. After a network change, let the DE compute
the order in which FEs should update their FIB, and then
use mechanisms designed into the Dissemination protocol
to ensure that FEs perform these updates in the computed
order. While such a solution is clearly possible, it may be
highly inefficient, to the point of being operationally imprac-
tical. This is because, as we shall see, a näıve solution for de-

2The FIB of an FE is a list of entries, where each entry spec-
ifies a destination set and the next-hop(s) to which packets
that match the entry can be forwarded.

Figure 1: Basic network model: Forwarding Ele-
ments, Decision Element, Links, Destinations, and
Egresses.

termining an appropriate ordering of FIB updates can result
in a very large number of update messages. In a CRN, the
number of messages required to update FIBs after a change
is of particular importance, as all of these messages origi-
nate from the DE, that then becomes a performance bot-
tleneck. Both the potential for transient forwarding loops
and the performance bottleneck of Dissemination messages
hold whether the DE is a fully centralized or a distributed
service. Devising a scheme for computing at the DE or DEs
an ordering of FIB updates that can both avoid loops and
minimize the number of messages needed is, therefore, im-
portant to provide this functionality efficiently in a CRN.3

In this paper, we devise and evaluate such a scheme based
on grouping of FIB updates to avoid loops while minimizing
the number of individual messages required. Using simula-
tions and network traces, we demonstrate the need for such
a scheme by identifying when and why simple scenarios can
give rise to conditions where multiple update messages per
FE are required.4 We evaluate the performance of our up-
date avoidance scheme with both analysis and simulations
across various topologies and failures scenarios.

The rest of this paper is structured as follows. Section 2
presents a model for a centralized routing system, with no-
tations and assumptions used in the following analysis. Sec-
tion 3 describes the problems of loop-free centralized rout-
ing, in particular with respect to message optimization. We
identify a condition, which we call No Ordering, which pre-
cludes the loop-free update of all nodes in a single pass.
Section 4 searches for instances of the No Ordering condi-
tion in real and simulated networks. Section 5 presents and
evaluates a Greedy algorithm for consolidating updates to
minimize message complexity. Section 6 presents conclu-
sions based on all of the results, analyses, and observations
of the paper.

2. FORMAL MODEL
We model a network as a directed graph G = (V ∪

{DE}, E), where V is the set of FEs in the network, and

3The potential convergence latency introduced by a central-
ized decision service is beyond the scope of this paper, but
we do note some implications to our solution to the transient
loop problem. Given that convergence delays are inherent
to CRNs, and CRNs have considerable flexibility in path se-
lection, it is reasonable to suppose that a CRN would have
path protection mechanisms.
4For simplicity, this model assumes that an FE can update
its FIB incrementally, that is, the FIB entry for any desti-
nation is writable independently of other destinations in the
FIB. Each update message sent by the DE, then, need affect
only a subset of destinations the FIB.

ACM SIGCOMM Computer Communication Review 66 Volume 38, Number 3, July 2008

DE corresponds to the centralized route service. Edges
(vi, vj) ∈ E(G) represent unidirectional links. We assume
that the network topology is reasonably robust, in the sense
that a single or a few link failures will not partition the
network5. In particular, to ensure that the DE is never
disconnected from the network, we assume that the links
connecting it to its adjacent FEs never fail simultaneously.
While partitioned networks and DE failures are important
problems in operational networks, they are beyond the scope
of this paper.

The network has a set D of destinations, corresponding
to IP prefixes6. Each reachable destination d is associated
with one or more FEs, called egress nodes for d. In Figure 1,
FEs 1, 2, and 3 are all egresses for destination a. FE 2 is the
unique egress for destination b, and FE 3 is the unique egress
for destination c. FE 4 is not an egress for any destination.

The goal of the routing system is to specify at least one
path from each FE to each reachable destination. In a so-
phisticated network where it is possible (and desirable) to
perform multipath routing (for load balancing, QoS, traffic
engineering, etc.), the FIB of a given FE may contain mul-
tiple neighbor nodes as next-hops for a single destination.
For destinations for which an FE is the egress node, i.e., a
directly attached subnet or a prefix reachable through an
eBGP peer, the FIB entry points to the local interface on
which to forward the packet and is not associated with a
“neighbor” FE in V .

Thus in the most general scenario, the forwarding deci-
sions implemented at the FEs for each of the destinations
d ∈ D produce Directed Acyclic Graphs (DAGs). In a
properly functioning, stable network, each forwarding DAG
spans all FEs in the network. There exists at least one di-
rected path to an egress for each destination d from any FE
in the network. In the simplest case of single-path routing
and a destination with a single egress node, the forwarding
DAG is an intree7 rooted at the egress. In this paper, by
forwarding DAGs we are always referring to the final sta-
ble set of forwarding decisions that FEs converge to after
any network event. During transition from one stable set of
forwarding DAGs to another, forwarding decisions may pro-
duce intermediate digraphs before converging to the final
DAG(s). These intermediate digraphs may contain cycles,
which are the graph representation of transient forwarding
loops.

The analyses in this paper are valid for any routing scheme
that selects acyclic paths to egress points. For simplicity of
exposition, some of the examples assume single-path SPF,
but none of the conclusions rely on that restriction.

For each destination d, a forwarding DAG R(d) is con-
structed such that the vertices of R(d) correspond to the
nodes of the network V (G).8 For each vertex vi ∈ V (R(d))
there is an arc from vi to each of its next-hops for d.

5FE failures obviously make the failed node unreachable.
We assume that the rest of the network remains connected.
6More generally, each destination may include additional
constraints beyond IP address, e.g., QoS parameters. So, for
instance, a destination can refer to a destination IP address
and a range of port numbers, accessed from a specified set
of source addresses and port numbers.
7An intree is a directed tree, the root of which is reachable
from any of the other vertices.
8R need be neither a tree nor use paths that are shortest
by any metric. It is sufficient for R to contain at least one
simple path to d from every node in V (G), and no cycles.

Message complexity is a central concern for design of the
Dissemination Plane. Dissemination serves as a transport
service, so its primary consumption of routing system re-
sources is through messaging. Further, message complex-
ity serves as a convenient proxy for the aggregate overhead
imposed by Dissemination. Each message represents the
computation, storage, and communication necessary at the
DE and throughout the CRN to produce, store, transmit,
and consume forwarding information. In particular, we ex-
pect convergence time to be roughly propotional to message
complexity. Because convergence is subject to factors such
as network errors and retransmissions that are irrelevant to
our main point, but unavoidable in any network analysis,
we focus on message complexity as a general proxy.

In distributed routing such as a link-state IGP, messaging
load is shared across all nodes of the network. But when the
Decision plane is centralized, the DE is a bottleneck: every
message in the Dissemination plane has the DE as either its
source or its destination. In this case, message complexity
at the DE is a critical consideration.

We assume that each dissemination message is addressed
to a unique FE and contains one or more destination up-
dates. Each destination update in turn contains the set of
next-hops for a given destination. FEs process destination
updates independently, in the order in which they are re-
ceived.

3. SETTING AND PROBLEM STATEMENT
In a centralized routing system with a DE as a dissemi-

nation bottleneck, one key optimization of any protocol for
the Dissemination plane is to deal with forwarding updates
in terms of groups of destinations, rather than one destina-
tion (or egress) at a time. As an ultimate goal, for any given
network event, we seek to send a single update message, cov-
ering all affected DAGs, to each FE. The reasoning behind
this is straightforward. The DE would require M = |D||V |
messages to update each destination individually for each
FE. More realistically, updates for all destinations sharing a
common egress can be grouped together, for a smaller but
still large M = |V |2 number of messages.

That number would be reduced substantially if it were
possible to send a single message to each FE with updates for
all destinations. This improves the worst case to M = |V |.
However, as we explain below, this optimization leads to
transient forwarding loops.

[3] defines an ordering of FIB updates that guarantees
loop-free convergence using only one message per FE for
a single destination. Given a downed link X → Y and
the cut reverse forwarding DAG RX→Y (Y), the ordering
criterion is that no FE in the DAG may update its FIB
before its children. In other words, the ordering constraint
is a topological sort of RX→Y (Y). As long as this order is
maintained for every updated destination, transient loops
can never form.

Destination changes external to the network proper can
also cause transient loops. Suppose, in Figure 1, destina-
tion a is reachable through FE 1 or FE 2. FE 4 then reaches
destination a through FE 2. But FE 2 loses its path to des-
tination a; now it is reachable only through FE 1, and FEs 2
and 4 must reroute. If FE 2 makes its FIB change before
FE 4, then there is a one-hop forwarding loop between FE 2
and FE 4 for destination a. This can happen through an ex-
ternal network change (e.g., learned from eBGP) or a policy

ACM SIGCOMM Computer Communication Review 67 Volume 38, Number 3, July 2008

change (e.g., to prefer the FE 1 link), but the point is that
transient loops can still appear.

3.1 The No Ordering Condition
The message optimization goal is to bring all FEs up to

date with the minimum number of messages. The smallest
number of updates is obtained when the DE can update ev-
ery FE with at most one message each, without producing
transient loops. Each update message contains all desti-
nation modifications for the receiving FE. We call such an
ordering of all destinations for all FEs a global update order.
It is not always possible to find a global update order. In
particular, we establish a necessary and sufficient condition
for this to occur.

Transient forwarding loops will be possible only if there
is a well-defined relationship between the forwarding DAGs
before (R(d)) and after (R′(d)) the routing change:

Theorem 1 (Potential Loops). If the union of a
priori and a posteriori forwarding DAGs:

H(d) � R(d) ∪ R′(d) (1)

contains a cycle, then there exists at least one FIB update
order which can produce a transient forwarding loop to the
destination d.9

Let

C(d) � cycles(H(d)) ∩ R′(d), (2)

and let L =
S

d C(d). Each C(d) represents the FIB update
order constraints due to an individual destination, so L is
the global union of all constraints across all destinations and
all failures. We then have the following theorem.

Theorem 2 (No Ordering). If L contains a directed
cycle, then updating the forwarding tables (all entries at
once) of FEs in any order will create a forwarding loop. Fur-
thermore, if the No Ordering condition does not hold, then
there exists a global update ordering of FEs that completely
avoids forwarding loops.

Proof sketch. If L contains no directed cycles, then L
is a directed acyclic graph (possibly consisting of multiple
disconnected components). This DAG induces a partial or-
dering of the nodes (FEs). The DE can reach and update
the forwarding tables of these nodes in an order that is com-
patible with the partial ordering induced by L. This update
order can never produce transient forwarding loops.

Conversely, if there is a directed cycle in L, then there
is no possible partial ordering. If a cycle includes nodes
vi, vj ∈ V (L), then there exist two directed paths vi →
· · · → vj and vj → · · · → vi. Therefore a loop-free update
ordering requires both that vi be updated before vj and
that vj be updated before vi. These two conditions cannot
be simultaneously true, so there cannot be a loop-free global
update ordering.

The existence of the No Ordering condition may seem to
be in contradiction with the ordering results of [3]. But No
Ordering arises from the message minimization requirement

9This theorem, along with most other theorems in this pa-
per, is presented without proof due to space constraints.
Proofs are available in the Technical Report version of this
paper.

of a CRN, and the goal to modify all destinations simulta-
neously. That goal is not a consideration in a distributed
routing environment and so it does not arise in [3].

When the No Ordering condition does not hold, a preorder
traversal of a topological sort of L provides a loop-free global
updating ordering.

Theorem 3. If, for every directed arc u → v ∈ E(C)
(that is, every arc in the graph C(d), which is a proper subset
of the arcs in G), the FIB of u is updated before the FIB of
v, then there can be no transient loops to destination d in
the network G.

In general, it is not possible to update all forwarding
DAGs in a single pass over the FEs. However, there are
important classes of events for which a global update order
always exists, that is, No Ordering does not hold.

Theorem 4. With any single link failure, there exists a
loop-free global ordering.

This is a straightforward corollary to the results of [3]. Given
a simple network change involving the failure of a single link
or node, or the activation of a single link or node, there
exists an optimal update order that sends a single message
to each affected FE. The message complexity, then, is M =
O(|V |) << O(|D||V |) in these cases. The algorithms in [3]
do not encounter the No Ordering condition because they
deal with state changes for each link individually. While this
avoids both transient loops and No Ordering, in a CRN this
approach would increase message complexity by a factor of
� for a failure of � links.

A similar result applies to single-node failures.

Theorem 5. For any single-node failure, there exists a
loop-free ordering of FEs.

Also, events on a single destination, or group of destina-
tions sharing a common forwarding DAG, cannot produce
No Ordering. The proof in this case is simpler: if a single
forwarding DAG has changed, then the FEs can be updated
in a preorder traversal of the new DAG. There are, by defi-
nition of a DAG, no cycles, and so the ordering must exist.

Operational networks are, however, subject to a range of
complex change events, as for example when multiple layer-
2 links fail simultaneously because an underlying layer-1 re-
source is damaged, or when a burst of BGP updates affects
multiple external destinations. Therefore the next question
is, when do these more complex network events have the
potential to produce the No Ordering condition?

3.2 Examples of No Ordering
What follows is a series of scenarios showing that plau-

sible, uncomplicated network incidents can bring about No
Ordering.

Multiple link failures. Consider the network on the left
side of Figure 2. Paths are computed by SPF with link
weights as shown in the figure. In particular, Node 5 reaches
destination a by path 4, 1, 3; Node 3 reaches destination b
by path 1, 4, 5.

If the links 1, 3 and 4, 5 were to fail simultaneously, the
new network would be as in the right side of the figure.
Node 5 now reaches destination a by path 1, 4, 5, H(a) (com-
puted as shown in Equation 1) contains the directed cycle

ACM SIGCOMM Computer Communication Review 68 Volume 38, Number 3, July 2008

Figure 2: No Ordering appears (above) after two
links fail and (below) from splitting of DAGs.

1 → 4 → 1, and C(a) = 1 → 4, computed as shown in Equa-
tion 2. Node 3 now reaches destination b by path 4, 1, 5, H(b)
contains the directed cycle 4 → 1 → 4, and C(b) = 4 → 1.

Now that C(a)∪C(b) ⊆ L contains a cycle, 4 → 1 → 4, the
No Ordering condition holds. It is not possible to update
this network with a single sequence of messages for both
destinations. If Node 4 is updated first, then data intended
for destination b from Node 1 will be forwarded to Node 4,
which will forward them right back to 1. But if Node 1
is updated before Node 4, then data for destination a from
Node 4 will be forwarded to Node 1, which will forward them
back to Node 4. Either way, there is a transient loop.

Multiple DAGs splitting, merging, or uprooting. Con-
sider a scenario involving multiple DAGs where simultane-
ously each of the DAGs splits into two or more DAGs, i.e.,
the number of egress nodes through which a set of desti-
nations are reached changes (as when BGP changes cause
multiple egress nodes to become equally attractive to reach
external destinations, and so internal nodes direct traffic to
their closest egress nodes). The bottom half of Figure 2
shows initially two such DAGs, one for each of the destina-
tions a and b. The DAGs for destinations a and b are trees
rooted at nodes 1 and node 3 respectively. Node 5 reaches
destination a through node 6, and 6 reaches b through 5.
Then, an external routing change adds new egresses for the
destinations: node 5 for destination a and node 6 for desti-
nation b. After this change, the DAG for destination a splits
into two disjoint trees, one still rooted at node 1 and other
at node 5. Similarly the DAG for destination b also splits
into two, with one still rooted at node 3 and other at node 6.
Again by inspecting the before and after DAGs, we see that
the No Ordering condition has occurred. In the DAG before
the split, node 5 forwards traffic to destination a through
node 6, and node 6 forwards to destination b through node
5. After the split, node 6 forwards to destination a through
node 5, and node 5 forwards to b through 6. As a result,
if 5 is updated before 6, then data to destination b will be
caught in a loop; but if 6 is updated before 5, then data to
destination a will be in a loop.

A similar No Ordering condition will occur in this example
if the egresses merge, that is, if the same event occurs in
reverse. Destination a, initially reachable through nodes 1

Mean Mean
Network Nodes Links Degree Diam. hops

GÉANT 25 39 3.12 3 2.79
AS 1755 137 280 4.09 7 5.46
AS 2914 573 1424 4.97 8 5.89
AS 3356 537 2304 8.58 6 4.22
AS 7018 534 1485 5.56 7 6.22

Table 1: Properties of sample networks.

k-link failures
Network Sample 2 3 4 5 6

GÉANT Full 8.0 20.0 32.0 44.0 56.3
AS 1755 1000 1.1 1.8 3.2 4.8 6.7
AS 2914 1000 0.1 0.4 1.5 2.9 2.9
AS 3356 ≥ 1000 0.02 0.1 0.1 0.3 0.8
AS 7118 1000 0.1 0.3 1.1 1.2 1.9

Table 2: Percentage of simulated multiple link fail-
ures that cause No Ordering

and 5, loses connectivity through node 5, while destination
b loses connectivity through node 6 and is only reachable
through node 3.

No Ordering will also occur if the egresses move: e.g., if
the egress for destination a changes from node 1 to node 5,
while the egress for destination b moves from node 3 to 6.

In summary, while several classes of network events always
have a global ordering, there are also plausible scenarios
in which No Ordering can occur. Since No Ordering can
happen, the question for the next section is, how frequently
does it happen in operational networks?

4. PROBABILITY OF NO ORDERING
In this section, motivated by our analytical findings, we

quantify the prevalence and severity of the No Ordering con-
dition during dissemination of routing updates. Both direct
observation and simulations are used. First, we simulate
multiple-link failures in large ISP networks. As shown in
the previous section, these failures can in principle produce
the No Ordering condition. The simulations will show the
probability of producing No Ordering in realistic topologies.
Second, we search BGP traces for evidence of egress tree
changes. Again, the previous section showed that this can,
in principle, produce the No Ordering condition, and so our
first step is to assess through measurements the frequency
of such occurrences in practice. The next step is then to
determine how many of these egress tree changes actually
give rise to the No Ordering condition. This assessment is
carried out by way of simulations on inferred topologies for
which we evaluate the impact of the egress tree changes de-
rived from our measurements. The main outcome of these
investigations is to establish that the No Ordering condi-
tion arises quite frequently during routing changes in actual
networks. Hence, the frequency of transient loops during
routing updates can also be high unless specific precautions
are taken, as argued in this paper.

4.1 Multiple-Link Failures
One event that can produce No Ordering is the simulta-

neous failure of multiple links. To provide for a realistic
setting when investigating the impact of multiple link fail-
ures, we use a number of different representative topologies
derived from traces that provide a reasonable coverage of a

ACM SIGCOMM Computer Communication Review 69 Volume 38, Number 3, July 2008

range of deployed topologies (see Table 1). These topologies
are derived from two different sources. The first is based on
traces of IS-IS link-state activity in the GÉANT European
research network during September 2005. The remaining
topologies come from the Rocketfuel project [12] and repre-
sent an inferred snapshot of the internal connectivity of four
large-scale ISP networks as of 2003. These topologies are
much larger and more richly connected than GÉANT, but
the topologies are inferred rather than directly observed.

As mentioned earlier, the analysis of Section 3 is valid for
arbitrary path selection schemes. However, for ease of il-
lustration the simulations presented below assume an SPF
scheme that selects a unique path from each FE to each
egress node, using uniform weights for the bidirectional links
gleaned from the topologies listed above, plus an arbitrary,
stable tie-breaker for equal-cost paths. A limited subset of
simulations were also run with equal-cost multi-path rout-
ing. Those results are presented in [11], and appear to indi-
cate that the use of multipath routing significantly increases
the incidence of No Ordering over the single-path results re-
ported below.

Table 2 shows simulations of multiple-link failures for the
topologies of Table 1. The first line shows the frequency
of the No Ordering condition for all possible k-link failures
in the GÉANT network for 2 ≤ k ≤ 6. Over 8% of 2-link
failures in GÉANT produced at least one instance of the
No Ordering condition, and this frequency grows to close
to 45% for 5-link failures. The No Ordering condition in
a large, well-connected network is less common, as shown
in the second part of Table 2. In larger networks, an ex-
haustive survey of multi-link failures is not combinatorially
practical, and so the frequency of the No Ordering condi-
tion was evaluated from a representative sample of k simul-
taneous bidirectional link failures for 2 ≤ k ≤ 6. Because
routing behavior depends on which links are chosen for fail-
ure, 1000 distinct k-link failure scenarios were generated for
each topology10 . In all cases the frequency of No Ordering
increases roughly with the number of links involved in the
failure, so that, say, a fiber cut that affects multiple logi-
cal IP links is more likely to give rise to the No Ordering
condition than the failure of a single router adapter.

Notice the two outlier networks in Table 2: GÉANT and
AS 3356. We conjecture that the incidence of No Ordering
is in part a function of link density. As the link density of a
network (the ratio of links to nodes) increases, paths become
shorter and the number of bottleneck links (which carry dis-
proportionately many source-destination paths) decreases.
Formation of No Ordering requires multiple paths, all si-
multaneously affected by a network event, sharing common
links or nodes. Short, disjoint paths decrease the frequency
of common links and nodes, and therefore decrease the inci-
dence of No Ordering. This is reflected in the two outliers in
Table 2: GÉANT, as a small network with low connectivity,
suffers the most frequent No Ordering. AS 3356, with by
far the highest link density in the sample, suffers the least
frequent No Ordering.

4.2 Egress Changes Seen Through BGP
From our earlier discussion, we know that besides multiple

link failures, another type of scenarios that can also give rise

10For AS 3356, a sample of 1000 2-link failures found no
incidences of No Ordering. A larger sample of 104 2-link
failures found two instances.

to the No Ordering condition are those that simultaneously
affect several DAGs associated with destinations reachable
through different egress points. In order to adequately assess
the effect of such scenarios, it is necessary to first determine
how common they are before trying to evaluate the extent
to which they can produce the No Ordering condition.

Because BGP updates that affect the choice of exit point
(BGP Next Hop attribute) are one of the common reasons
behind egress DAG changes, we focus on extracting from
BGP data the likelihood of changes that simultaneously af-
fect multiple egress DAGs. The BGP data we use for that
purpose is obtained from RouteView traces [10] gathered
from seven ASes in April 2007. The seven ASes were se-
lected because they provide multiple vantage points for the
BGP updates that the AS experiences, and this is instru-
mental in allowing us estimate when those updates actually
correspond to multiple egress DAG changes. Specifically,
we look for BGP updates that affect a given prefix and that
change egress point selection in the two vantage points11. A
scenario where the two vantage points go from agreeing to
disagreeing in their selection of egress points corresponds to
a splitting of egress DAGs, and conversely one where they
switch from distinct egress points to a common one corre-
sponds to a merging of egress DAGs.

Because RouteViews traces are collected using eBGP from
outside of the monitored AS, egress changes within the moni-
tored AS are not visible. Instead, we infer Next Hop changes
from the identity of the first hop AS specified in the AS Path
attribute obtained from each vantage point. Specifically,
we assume that the use of distinct first hop ASes by the
two vantage points corresponds to a choice of different Next
Hops and therefore egress points, and that a change in the
first hop AS in the AS Path attribute advertised by a given
vantage point corresponds to a switch to a different egress
point by that vantage point. Based on this, we consider
that a given egress DAG splits if the two vantage points go
from advertising the same first hop AS in their respective
AS Path attributes to advertising distinct ones. Conversely,
we assume that the egress DAGs of the two vantage points
merge if they switch to both advertising the same first hop
AS in their respective AS Path attributes. We note that
this approach entails some inaccuracies. In particular, the
choice of the same first hop AS by two vantage points need
not imply that they select the same egress point, e.g., as
when two ASes have multiple peering points and the IGP
cost is used to select one. Conversely, a change in the first
hop AS in the AS Path advertised by one of the vantage
points need not always signal the selection of a new egress
point, e.g., because the two ASes are reachable through the
same multi-homed egress router. The first type of inaccu-
racies can lead us to overlook some egress DAG splits, i.e.,
when one egress point moves to a different router connected
to the same AS, while the second type can produce false ad-
ditional egress DAG splits, i.e., when the egress point does
not move in spite of a change in first hop AS. Neverthe-
less, we expect and have validated that these assumptions
provide reasonable estimates of instances of egress DAGs
merging and splitting.

The seven ASes with two vantage points that we selected

11In order to eliminate transient changes that are simply cre-
ated by iBGP latency between the two vantage points, as
suggested in [13] we group all BGP updates taking place
within a 120 sec time interval.

ACM SIGCOMM Computer Communication Review 70 Volume 38, Number 3, July 2008

Estimated tree changes per minute

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Agreement transition rates in two representative AS

 Mean Mean

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AS 286 (most transitions)
AS 2914 (fewest transitions)
Median; 90th, 95th, 99th Percentiles

Figure 3: Incidence of changes in next-hop AS.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of tree splits

P
ro

ba
bi

lit
y

of
 N

o
O

rd
er

in
g

in
 n

et
w

or
k

(9
5%

 c
on

fid
en

ce
)

Simulated egress tree splits in four networks

AS 1755
AS 2914
AS 3356
AS 7018

Figure 4: Effect of simulated simultaneous egress
tree split events on the probability of a No Ordering
condition anywhere in the network.

are ASes 286, 852, 2914, 3130, 3549, 6453, and 12682. Fig-
ure 3 shows the number of agreement transitions of prefixes
taken from two of those seven ASes (AS 286 and AS 2914)
during April 2007. These two AS are of interest because
they are, respectively, the most and least active among the
seven visible from RouteViews: that is, the distributions for
the other four AS fall somewhere in between the two curves
plotted in Figure 3. In all cases, agreement transitions are
frequent in the data, with the median lying between 8 and 25
per 2-minute interval, depending upon the AS. This means
that even in the AS with the fewest agreement transitions,
half the 120-second windows during the month of April 2007
had eight or more of them.

4.3 No Ordering in Egress Splits
Having established the frequency of tree merges and splits

in actual networks, the next step is to quantify how often
they give rise to No Ordering. The focus will be on egress
tree splits whose impact will be evaluated by simulation us-
ing the inferred Rocketfuel topologies of Table 1.

The simulation procedure for an egress tree split is as fol-
lows. Each simulated split begins with a selection at random
of two nodes, X and Y . Before the event, all nodes in the

Message complexity Greedy factor
(percentiles) (percentiles)

Net Fail 10 50 90 10 50 90

GÉANT link 6 20 72 2.4 3.7 5.4
node 48 64 160 1.9 2.6 6.4

AS 1755 link 112 302 677 2.3 4.0 7.7
node 534 907 1983 3.9 6.6 14.

AS 2914 link 502 1873 4864 2.2 5.2 11.
node 2621 5731 14535 4.6 10. 25.

AS 3356 link 235 833 2112 1.6 2.5 5.2
node 2024 4549 10778 3.8 8.5 20.

AS 7018 link 351 1323 5726 1.6 3.9 14.
node 2071 6640 18709 3.9 12. 35.

Table 3: Message complexity of per-destination up-
dates.

network route to a destination d through X as the egress.
After the event, the network is partitioned between nodes
that reach d through egresses X and Y . For this simulation,
the partition is decided by the shortest path: each node
routes to the egress that is the fewest hops away. Ties are
broken in favor of X, in an attempt to minimize thrashing.
Only nodes that have fewer hops to Y than to X need their
forwarding tables changed.

Each simulated event involves two or more tree splits, in-
volving two distinct sets of egress nodes chosen at random,
using all nodes in the network as potential egress points with
equal probability.

To minimize sampling error, each scenario (selected AS
and number of trees being split - varied from 2 to 9) was re-
peated 104 times. For all measurements we record the 95%
confidence intervals, as summarized in Figure 4. The No
Ordering condition is a frequent occurrence in these sim-
ulations. The frequency with which it appears increases
approximately linearly with the number of trees being split
across the entire range observed, with AS 3356 again an out-
lier because of its higher link density as conjectured earlier.

As for the multi-link failure scenarios of Section 4.1, the
simulations presented here assume single-path routing, but
results when multiple equal cost paths are allowed can be
found in [11] and again point to an increases in the incidence
of No Ordering. Thus, given the common use of multipath
routing in practice, one can expect an even higher frequency
of occurrence of No Ordering than reported in this paper.

The main conclusion is that given the frequency with
which multiple egress trees split in operational networks (as
measured in Section 4.2), and the frequency with these splits
can produce No Ordering (as simulated in this section), it is
reasonable to conclude that No Ordering occurs frequently
in operational networks. Each instance of No Ordering must
produce transient forwarding loops if the DE attempts to
update all FEs in a single global order. This adds up to
significant network disruption.

5. MESSAGE OPTIMIZATION
Because of the No Ordering condition, it is not always

possible to find a global update order to prevent transient
forwarding loops. It is natural to ask next if it is possible
to partition destinations so that within each partition there
is a valid, loop-free ordering of FEs for update? That is,
given a set D of forwarding DAGs, each of which needs to
be modified in one or more FEs, is it possible to form a
partition {Di} of D such that for every Di the No Ordering

ACM SIGCOMM Computer Communication Review 71 Volume 38, Number 3, July 2008

condition does not hold? The answer is Yes: as established
in Section 3.1, the No Ordering condition cannot occur when
updating a single DAG. If each of the partitions Di contains
a single DAG, then that partition must have a loop-free
update order. So it is possible to avoid transient loops for
any network event by sending a separate update to each
FE for each affected DAG. The DE can then calculate an
independent, loop-free update order for for each DAG.

To understand the cost of this näıve approach, consider
its message complexity.

To tally the message complexity in any network event, we
first define the condition δuv(D, D′) to indicate that when
a network event changes the forwarding DAGs from D to
D′, the set of downstream neighbors of node u changes for
destination v. In other words, the nexthop set for node u
needs to be updated for destination v. (For brevity we ab-
breviate this as δuv, leaving the DAGs implicit.) Message
complexity depends on the number of forwarding DAGs af-
fected by a given network event, as well as the number of
affected upstream nodes12 in the corresponding forwarding
DAGs13. For näıve updates, we assume that it takes exactly
one message to inform a single forwarding node of a change
to each DAG. Their message complexity is computed thusly:

M0(G, D, D′) =
X

u∈V (G)

X

v∈D′
δuv. (3)

Message complexity when a global update order is available
is simpler, with each node requiring at most one message if
any of its next-hops have changed:

M1(G, D, D′) =
X

u∈V (G)

1(
P

v∈D′ δuv)>0. (4)

Individual updates. The middle columns of Table 3, la-
beled “Message complexity,” show the M0 message com-
plexity (i.e., without update grouping) of all single-link and
single-node failures, as simulated for each of the listed net-
works. The message complexity varies depending on the
particular network event that triggers the update, so the
table shows median, tenth, and ninetieth percentiles of the
results.

Remember that, by Theorems 4 and 5, none of these
events can produce the No Ordering condition; so there must
be a global update order available, although näıve update,
by definition does not use it. For all of the large networks,
even these simple network events require hundreds or thou-
sands of messages to disseminate updates.

Update grouping. Having established that message mini-
mization is a worthwhile goal in a CRN, but that dissemina-
tion with a single message per FE leads to transient loops,
it is time to seek a realizable compromise. To improve mes-
sage efficiency, we seek to consolidate DAGs into K update
groups, such that 1 ≤ K ≤ |D|. Compared with a näıve per
destination update mechanism, this could reduce message
complexity from |D||V | down to K|V |, yielding a significant
improvement if K << |D|. Unfortunately, the following the-
orem states that the problem of finding the minimum set of

12Assuming that as u, they need to update their next hop(s)
for destination v.

13This neglects such low-level details as retransmissions and
segmentation of large update messages.

Greedy(D, D′)
1 B ← ∅
2 for d ∈ D and d′ ∈ D′
3 do L← cycles(d ∪ d′) ∩ d′
4 f ← true

5 for b ∈ B
6 do if cycles(b ∪ L) = ∅
7 then b← b ∪ L
8 f ← false

9 break
10 if f
11 then B ← B ∪ {L}
12 return B

Figure 5: Greedy Destination Partition Algorithm

K update groups is NP-hard. The proof of the theorem is
in [11].

Theorem 6 (Destination Partition). The problem
of partitioning destinations into the minimal number of up-
date groups, so that for each group there exists an order of
node (FE) updates that allows the simultaneous update of
the forwarding states of all destinations while avoiding the
creation of forwarding loops is NP-Hard.

The proof, available in the technical report [11], relies on a
reduction from the NP-Complete Independent Set problem
to the Destination Partition problem.

5.1 Greedy Destination Partition Algorithm
Not only is Destination Partition NP-Hard, but we con-

jecture, based on its relationship to the Independent Set
problem, that it is also difficult to approximate. Indepen-
dent Set belongs to a class of problems that have defied
tight approximation [9]. In fact, a simple, fast greedy ap-
proximation is the best solution available, using polynomial
processing time to construct update groups which are guar-
anteed to be loop-free but which may not be a minimum
partition. This algorithm is called in the DE after one or
more network events has forced a recalculation of forward-
ing paths. Given the network-wide sets of forwarding DAGs
from before and after the events, the algorithm assigns each
DAG to an update group and calculates an update order for
the affected FEs in each group. The plan of the algorithm
is simple: it maintains a set of update groups, B. For each
destination DAG d that requires an update, the algorithm
considers adding the new DAG to each update group in turn.
The DAG d is assigned to the first update group b ∈ B for
which d does not produce the No Ordering condition.

Figure 5 describes the greedy algorithm in more detail.
Inputs are D, the initial set of forwarding DAGs before the
network change; and D′, the set of DAGs changed by the
network event. The result, B, is a set of destination groups.
Each group b ∈ B comprises a set of destinations and a com-
bined DAG that represents the update ordering constraints
on the group of destinations. We assume the availability of
an auxiliary function cycles, which returns the subgraph of
its argument comprising all arcs that are part of directed
cycles.

The algorithm starts with an empty result set B = ∅,
then at line 2 considers each forwarding DAG both before
(d) and after (d′) the network event. At line 3, the algorithm

ACM SIGCOMM Computer Communication Review 72 Volume 38, Number 3, July 2008

calculates L, the update order constraints due to d. Then,
for each update group b ∈ B, the algorithm checks for cycles
in b ∪ L. If there are no cycles, then adding d to b does not
produce the No Ordering condition, and so the algorithm
adds d to b and skips to the next forwarding DAG. If d would
produce No Ordering in group b, the algorithm moves to the
next update group. Finally, if d produces No Ordering in all
of the current update groups, the algorithm creates a new
update group for d at line 10.

For each destination group, the associated DAG in B con-
strains the set of loop-free update orders: if uv ∈ E(b ∈ B),
then v must be updated before u. No update order that
obeys these constraints can produce a transient forwarding
loop. That leaves the DE free to choose a conforming update
order to minimize network convergence time and maximize
message parallelism.

The worst-case time complexity of the greedy algorithm
is O(|D|2|V |2), because finding a group for each destina-
tion takes O(|D|2|V |). In practice, its performance is much
better, because the number of groups is small. Also, the
algorithm permits optimization by exploiting the flexibility
in both the selection of destinations on line 2 and update
groups in line 5.

Note: in the absence of the No Ordering condition, the
greedy algorithm will find a global update order that does not
produce transient loops. For network events that give rise to
No Ordering, the outcome of the greedy algorithm depends
on the order in which it considers destinations in the loop
beginning on line 2. In the worst case, the greedy algorithm
produces min(|L|, |D|) update groups.14

5.2 Evaluation of the Greedy Algorithm
This section evaluates the effectiveness of the Greedy al-

gorithm of Section 5.1 in identifying an efficient update or-
dering that guarantees the absence of transient loops with
approximately minimum messages. We use two related met-
rics for this measurement. First is raw message complexity
as defined in Section 5. Also, because the Greedy Algo-
rithm does not directly optimize message complexity, but
rather seeks to minimize the number of update groups, we
use number of update groups as a secondary metric.

Greedy Algorithm - Global Ordering. After execution
of the greedy algorithm, the DE must send one message per
update group to each FE affected by the egress nodes in
the group. In the best case, when No Ordering is absent,
the Greedy Algorithm produces a single update group and
the resulting message complexity is no more than the num-
ber of FEs in the network.15 This is true in the majority
of real network failures, and is true of all of the single-link
and single-node failures simulated in Table 3. The right-
most column of Table 3, labeled “Greedy factor,” shows the
improvement in message complexity obtained by sending a
single update per FE, using an order found by the Greedy
Algorithm. The computed values correspond to the tenth,

14Also, note that we need only enforce a partial order of
FEs within each update group. The DE is free to apply
additional ordering constraints for other purposes, e.g., to
minimize the duration of black holes caused by link outages.

15Remember that the loop-free update order is constrained;
an arbitrary update ordering runs the risk of producing tran-
sient forwarding loops. The Greedy algorithm produces a
loop-free global ordering, if one exists.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of naive messages to messages with greedy update grouping

C
um

ul
at

iv
e

fr
ac

tio
n

of
 n

et
w

or
k

ev
en

ts

AS 1755, n=176
AS 2914, n=78
AS 3356, n=13
AS 7018, n=46
Percentiles 50, 90, 95, 99
Mean

Figure 6: Improvement in message complexity after
Greedy update grouping of k-link failures.

0 5 10 15 20 25 30 35 40 45 50

2

3

4

5

6

N
um

be
r

of
 u

pd
at

e
gr

ou
ps

Frequency (Percent of No Ordering scenarios)

AS 1755, n = 4525
AS 2914, n = 4116
AS 3356, n = 522
AS 7018, n = 4201

Figure 7: Number of update groups found by
Greedy Algorithm in scenarios with six DAGs split

median and ninetieth percentiles of the ratio M0/M1. Re-
ductions by factors of 5 or more are common in some cases
can be several orders of magnitude.

In more complex network events, the reduction of mes-
sage complexity is even more pronounced. Starting with
the simulations reported in Table 2, we concentrated on the
subset of cases that did not produce No Ordering. In each
case, the Greedy destination partition algorithm found a
single update group with a global update order. The result-
ing message complexity reductions, again corresponding to
M0/M1, are almost always at least a factor 5, and in rare
cases can be nearly a factor 100.

Greedy Algorithm - No Ordering. Next, we consider sce-
narios where No Ordering is present. First, we generalize
Equation 4 to measure message complexity with a set B of
update groups:

MB(G, D, B) =
X

b∈B

X

u∈G

1(
P

v∈b δuv)>0. (5)

Here we consider the subset of k-link failure results from
Table 2 that do produce No Ordering. Because results of
the Greedy algorithm depend in part on the order in which
nodes are considered for grouping, for each network event we
use 100 runs of the algorithm, each considering the nodes in
a distinct order. The resulting message complexity reduc-
tions, M0/MB , shown in Figure 6, are very similar to the
results for M0/M1, showing that the efficacy of the Greedy
algorithm is insensitive to the presence of No Ordering and
the number of update groups |B|.

DAG-split scenarios, as illustrated in Figure 4 and de-
scribed in Section 4.3, also produce No Ordering, but with

ACM SIGCOMM Computer Communication Review 73 Volume 38, Number 3, July 2008

differences from k-link failures. Empirically, No Ordering
occurs more frequently with DAG splits than with link fail-
ures. But while each link failure affects every DAG that in-
cludes the failed link, each DAG split affects only one DAG.

Because the number of affected DAGs is limited to k, the
number of split DAGs, for small k it is practical to apply the
Greedy Algorithm exhaustively with all k! permutations (in
Figure 5 on line 2). To study the Greedy Algorithm in DAG-
split scenarios with the No Ordering condition, we took each
split of k ≤ 6 DAGs in Figure 4 that produced No Ordering,
and ran the Greedy Algorithm with all permutations. The
first result was that DAG permutation had no effect on the
number of update groups found by the algorithm. While this
result is surprising, it is also encouraging, because it means
that in these cases the Greedy Algorithm always found the
optimal number of update groups. However, this property
is not proven for the general case of DAG splits, and is
obviously not the case for general network events, as shown
by the k-link failure results.

Figure 7 shows the number of update groups found by
the Greedy Algorithm16 across four topologies with six split
DAGs. The results are better than the näıve approach, using
six update groups with one DAG per group, approximately
90% of the time. This conclusion is consistent across all four
networks.

Thanks to the small number of update groups, the Greedy
algorithm runs quickly: the fewer groups, the fewer graphs
the algorithm must test for cycles.

6. CONCLUSIONS
This paper demonstrates that the problem of avoiding

transient routing loops changes significantly in a centralized
routing environment as compared with a decentralized IGP.
Centralized routing introduces a bottleneck in the Distribu-
tion plane at the node(s) providing the centralized Decision
service. This in turn calls for minimizing the number of
messages they originate.

As a result, message efficiency is a key consideration in
the operation of a DE seeking to update its FEs after a
network change while avoiding transient routing loops. In
general, changes affect multiple destinations and FEs at a
time. The ideal in terms of message complexity is to send
a single update message to each affected FE. This is not
always possible without creating loops due to a condition
called No Ordering, and the paper provided evidences that
this condition commonly arises in operational networks. We
then turned to explore the extent to which it was possible to
reduce message complexity by grouping updates whenever
possible. It first showed that identifying an optimal solution
was NP-hard, and then proceeded to propose and evaluate
a greedy approximation that was found to significantly im-
prove message efficiency. The paper and its results can help
inform and realize the design and deployment of centralized
routing solutions.

7. REFERENCES
[1] Albrightson, R., Garcia-Luna-Aceves, J., and

Boyle, J. EIGRP–A fast routing protocol based on

16GÉANT was not included because its clients are not mul-
tihomed and the network is so small that six simultaneously
split DAGs is not a plausible scenario.

distance vectors. In Proc. Network/Interop (Las
Vegas, NV, May 1994).

[2] Feamster, N., Balakrishnan, H., Rexford, J.,

Shaikh, A., and van der Merwe, K. The case for
separating routing from routers. In Proc. ACM
SIGCOMM Workshop on Future Directions in
Network Architecture (FDNA) (Portland, OR,
September 2004).

[3] Francois, P., and Bonaventure, O. Avoiding
transient loops during the convergence of link-state
routing protocols. IEEE/ACM Transactions on
Networking 15, 6 (Dec. 2007), 1280–1292.

[4] Francois, P., Bonaventure, O., Shand, M.,

Bryant, S., and Privedi, S. Loop-free convergence
using oFIB. Internet draft, February 2008. Work in
progress, revision 02.

[5] Fu, J., Sjödin, P., and Karlsson, G. Loop-free
updates of forwarding tables. Tech. rep., Royal
Institute of Technology (KTH), Aug. 2007. Accepted
in IEEE Transactions on Network and Service
Management (TNSM).

[6] Garcia-Lunes-Aceves, J. J. Loop-free routing using
diffusing computations. IEEE/ACM Trans. Netw. 1, 1
(February 1993), 130–141.

[7] Greenberg, A., Hjalmtysson, G., Maltz, D.,

Myers, A., Rexford, J., Xie, G., Yan, H., Zhan,

J., and Zhang, H. A clean slate 4D approach to
network control and management. ACM Comput.
Commun. Rev. (CCR) 35, 5 (October 2005), 41–54.

[8] Hengartner, U., Moon, S., Mortier, R., and

Diot, C. Detection and analysis of routing loops in
packet traces. In IMW ’02: Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment
(New York, NY, USA, 2002), ACM Press,
pp. 107–112.

[9] Hochbaum, D. S. Approximating covering and
packing problems: Set cover, vertex cover,
independent set, and related problems. In
Approximation Algorithms for NP-Hard Problems,
D. S. Hochbaum, Ed. PWS Publishing, 1997, ch. 3,
pp. 94–143.

[10] Meyer, D., et al. University of Oregon Route Views
project. http://www.routeviews.org.

[11] Peterson, H., Sen, S., Chandrashekhar, J., Gao,

L., Guerin, R., and Zhang, Z.-L. Message-efficient
dissemination for loop-free centralized routing. Tech.
rep., University of Minnesota Department of
Computer Science, 2008. http://www-users.cs.umn.
edu/∼peterson/tr-dddd-2008-01.pdf.

[12] Spring, N., Mahajan, R., Wetherall, D., and

Anderson, T. Measuring ISP topologies with
Rocketfuel. IEEE/ACM Transactions on Networking
12, 1 (2004), 2–16.

[13] Teixeira, R., Shaikh, A., Griffin, T., and

Rexford, J. Dynamics of hot-potato routing in IP
networks. ACM SIGMETRICS Performance
Evaluation Review 32, 1 (2004), 307–319.

[14] Yan, H., Maltz, D. A., Ng, T. S. E., Gogineni,

H., Zhang, H., and Cai, Z. Tesseract: A 4D network
control plane. In Proceedings of USENIX Symposium
on Networked Systems Design and Implementation
(NSDI ’07) (2007).

ACM SIGCOMM Computer Communication Review 74 Volume 38, Number 3, July 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

