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Abstract— Binding services are crucial building blocks in
networks and networked applications. A binding service (&., the
Domain Name System (DNS)) maps certain information, namely
binding keys (e.g., host names), to other information, i.ebinding
values (e.g., IP addresses), and answers queries for suay-value
bindings. Clearly, building secure binding services that ensure
the integrity and authenticity of bindings are vital to the correct
operations of many networks and networked applications.

In this paper we present a novel approach for building
generic secure binding services that allowarbitrary key-value
bindings as (trusted)infrastructure services to support a variety of
networks and networked applications. We combine thd dentity-
Based Encryption (IBE) crypto-mechanisms with distributed hash
table (DHT) techniques to develop an innovative architectte
for building scalable, robust and secure binding servicesUsing
this architecture, we implement a prototype system calledvault
and evaluate its performance both in a local testbed and on #
PlanetLab.

I. INTRODUCTION

Clearly, security is a key concern in building a binding
service over an (untrusted) wide-area network, as integfit
bindings is often vital to the correct operations of netvgork
and applications that rely on it. In building a (genesecure
binding service, there are twminimumrequirements: i) as
stated earlier, the service must ensure that only the owher o
an existing binding can update or delete the binding; and ii)
users of the service must have the guarantee that the bsding
returned to their queries must indeed be the correct bisding
deposited into the service by the owners. To meet these two
requirements, a secure binding service must be robuststgain
“man-in-the-middle” binding poisoning (e.g., DNS poisog)
attacks, where “imposters” interposed between users and th
service cannot alter binding insertion requests from owner
to the service or binding query replies from the service to
the queriers. In addition, a (generic) secure binding servi
must also be scalable and robust. The combination of sgcurit

Binding services are crucial building blocks in networkscalability and robustness makes building a secure binding
and networked applications. For example, the domain namervice a challenging task.

system (DNS) binds host names to IP addresses, providingn this paper we develop a novel approach for building
an indispensable infrastructure service to Internet apfitins. generic secure binding services as (trusteidfrastructure

In (SIP-based) VoIP services, registrars/location sena&e servicesto support a variety of networks and networked
needed to map users’ names (SIP URLs) to appropriate Sipplications that require secure binding as a core function
proxy servers for signaling and other purposes. In genergihe generality of our secure binding services comes from

a binding service translates some keysnding key} into
corresponding valuesbipding valuey, i.e., eachbinding is
a (key, val ue) pair associated with a user — tbemnerof

the adoption of asemantic-free, flatidentifier” (id in short)
space [1] as the intermediary for bindings. This allows us to
separate the more complexglicy issues such asamespace

the binding — that utilizes the service. In a sense, a bindinganagemerissues (e.g., name structure, ownership, etc.) from
system is aspecializedook-up or directory service where thethe basicmechanismdor building secure binding services.
notion of ownershipof binding is essential: each binding hast also allows us to employ distributed hash table (DHT)
an owner (the client who registers the binding), and only thechniques (e.g., [2], [3]) for building highly robust and
owner can update or delete the binding. In this paper we aigalable distributed systems. The keyeltyof our approach

especially interested in building genericbinding service —

lies in combining thddentity-Based EncryptioiBE) [4] with

where we placeno restrictions on the syntax or semantic®HT techniques to develop a secure binding (infrastrugture
of binding keys — in particular, the identity of an ownegervice — referred to agault Vault is robust against “man-in-

of a binding may not be part of the binding Rey as a

the-middle” attacks and the security of Vault does not raly o

(trusted)infrastructureservice that can be shared by a varietgxogenousrusted third-party such as PKI or requiring users

of applications.

1The conventional DNS hostname to IP address binding is amgiea

where the binding key, e.chost . f 00. com (typically) contains the owner’s

to have their own public key pairs.
As an infrastructure service, Vault is built using a twodev
architecture: at the core of the system are a number of dpecia

identity, heref 00. com due to the hierarchical namespace of DNS. On theaodes (computer systems) callpdlars, which are assumed

other hand, reverse DNS look-up is an example where the oigeatity is

not part of the binding key, here an IP address. Other exanipi#ude SIP
registration which binds a phone number or an IP address & g1®xy, or

location service (e.g., in wireless networks) that bind$hang number or an
IP address to a geographic location. There are many otheatisits in real
life where we want to bind certain keys to other pieces ofrimfation where
either the owner identity is immaterial or concealed, whitehe same time
the authenticity of the bindings must be preserved.

to be highly fault-tolerant, and play a critical role in eriag

the security of the service, which includesvate (decryption)

key generation [4]; they do not directly interact with useos
store their bindings. These functions are performed bydke r
of the nodes calledolumns which form a ring structure using
Chord [2] and may be added to or removed from the system



dynamically. A user who wants to insert a binding or querfpor validating public keys is needed. IBE obliviates the chee

for a binding encrypts its request using thiading key id(a for such a certificate system. In addition, IBE enables what

hash of the key), and sends the encrypted requests to Vawk; call asynchronoussecret communication that is crucial

only corresponding node (column) in Vault that owns the ke our construction of secure binding services: it allows on

id can decrypt the request, perform the requested fundimsh, to establish aorward secret communication channel (using

reply to the user in a secure manner. IBE for encryption) from a sender to a target identity, where
There are many challenging design and implementatitine sender does not need to have prior knowledge or contact

issues in combining DHT and IBE to develop a scalable, robusith the corresponding receiver; the private key corresjpan

and secure binding service. First and foremost, to provitle the target only needs to be generated by the PKG on-

the security and trustworthiness of Vault as an infrastmect demand when the receiver requests for it. In contrast, in

service, we must ensure only authorized nodes (columns) ¢ha conventional public key systems such as RSA, a public-

join Vault, and only active columns (those are part of Vauftrivate key pair must be pre-generated for each receiverdef

at a given time) can decrypt user requests, store bindingEmmunications can proceed. For a detailed description of

and answer queries. To address these issues, we developB&n we refer interested readers to [4].

innovative mechanism callescure bondhat allows a column

to prove to pillars that they indeed own a requested key id 80 Secure Binding using DHTs: Why IBE?

as to retrieve the corresponding decryption key. Furtheemo

because IBE operations are computationally expensive, eﬂ‘,

ciency is also a major concern. In addition, although thizegpa b

focuses on the basic mechanisms for building secure bindi

services-by separating th(_a pglicy is;ues as "add-ons, W€ Gst be scalable and robust. To this end, we employ DHT
take the importance of policy issues into account by progdi techniques for building such a service. Note that our system

th_e necessary interfaces and_ plug-m_s - In the re_malncleri not a "peer-to-peer” system in the sense that it is not built
this paper we present the design and implementation of Va ging end hosts of users. In fact, nodes constituting thiesys
and discuss how these issues are addressed. In the ne&nsegpe part of an infrastructure service: only authorized s

we present what is IBE and illustrate why IBE is unlquel%)in the system. In this paper Chord is used as our choice of

swte.d for building secure binding SErvices using DH.TS' HT but our approach can be easily extended to other DHTSs.
Section Il we explain the Vault architecture and operatias : . S . .
. The basic operations of a binding service using DHT are
well as some further enhancements. In Section IV we evaluate .~ L
ry similar to those of any DHT-based look-up services:
the performance of a Vault prototype we have deployed bo\gﬁuseru inserts (or “puts’) a binding (ake val ue)
in a local area testbed and on the PlanetLab. The paper is . . or-p . 9 (akey, /

: ; pdir) into the service by hashingey to an id in the flat id
concluded in Section V _— .

' spacejdy.y, and sends the binding to the service usiig.,

Il. BACKGROUND AND MOTIVATION as the target (i.e., destination). For a querier who wants to
8uery for this binding, it simply sends a query message to the
Service usingdy., as the target and the corresponding value
is returned. To ensure the trustworthiness and basic $gcuri
es . T
of the service, we must guarantee the following: i) only the
owner of the bindingy, can update or delete the binding; ii)
A. Identity-Based Encryption the returned binding to queriers is indeed franin particular,

- L . a secure binding service must be robust under'man-in-the-
Originally proposed as a means to simplify certificate man-

) . ) . . middle” binding poisoning attacknodel, namely, an attacker
Zﬁgxsegtnm zrrgi"jtl;;ysims [(‘2’ 'degrt:;i_lbgjggeigcgr/pgtﬁ'glusinterposed between users and the service cannot altemigindi
. > any Y g \€.g., en JInsertion requests from owners to the service or bindingyque
identifiers) to be used as the public key. The corresponding ;. : :

rgphes from the service to the queriers.

private key is generated by a central authority (called the . Lo
private key generatoor PKG in short). For example, if Bob One may argue that such service can be easily implemented
: ' ing traditional public key crypto-systems such as RSA or

. : S
wants to send a secret email to Alice, he encrypts the emo%tﬁwer techniques. For example, OpenDHT [5] employs public

using Alice’s email address (i.e., her identity) as the pmblkey crypto mechanisms for authenticatpdt / get opera-

key. For decryption, Alice first retrieves her private kegrfr . . .
the PKG and subsequently uses it to decrypt the email. Her%'(%qsz' Unfortunately these authenticatedt / get operations

in IBE, as long as Bob knows the identity (here email address), _ _

. : . . “Under the authenticated put/get mode, each owner has acfpuistate
of Alice, he Fan send ?-n encrypted email to Alice. Whereas,ﬂgk, pair, denoted< p and K g, respectively. To insert a binding of key-value
the conventional public-key cryptosystems such as RSA, Bohwv), an owner sends the following to the serviéew, K p, a noncen , an
first needs to obtain the public key of Alice, and has a way fPiration timet, ando = {H(k, v,n, )}k, Where{X} x4 denotes the
ensure that the public key does indeed belong to Alice — he digital signing of X with Kg and H is a secure hash function (e.g., SHA-1).

- ) - retrieve the binding, a querier sends the followifig, H(Kp)} to the
a certificate system (e.g., a PKI — public key infrastructureervice and the service returdgv, n,t, o)}.

.Our goal is to build agenericsecure binding service as a
Ustedinfrastructure service, using which users can deposit
indings (e.g., email address and location mappings etad,
lgery for bindings. As an infrastructure service, the sarvi

In this section we briefly explain what is identity-base
encryption (IBE), and motivate why IBE is particularly sdt
for building secure binding services using DHT techniqu
with a flat identifier space.



are not robust against the “man-in-the-middle” bindingspoi it is particularly challenging to establish secure chasriel
ing attacks, as the attacker may intercepthé message senta DHT-based system using traditional public key crypto-
by a binding owner, replaces the public key with its own, anghechanisms. For example, we can use multiple RSA public-
re-signs the message, and sends it to the service, which pasgate key pairs, each for one portion of the id space and
no way to verify the boguput messagé Moreover, in order store private keys at appropriate nodes. When a user wants
for a querier to look up a binding using a binding key, it mugb send a message to the system destined for samé
know a priori the public key associated with the binding keysimply encrypts the message using the right RSA pubic key
which in itself requires a secure binding service and the node responsible for its message would decrypt the
The public key infrastructure (PKI) can be viewed, in @anessage using the corresponding RSA private key. However,
sense, as a secure binding service that binds a public keythis requires users to know which public keys to use for which
its owner with a certificate signed by a trusted third party, gortion of the id space; when the number of such public-peiva
certificate authoritfCA). Hence a PKl-based approach can bkey pairs is large, it needs a secure binding service infitsel
used to build secure binding services (e.g., as used in DESS® manage such public key to (portion of) id space mappings.
and CoDoNS [7]),provided that the owner’s identity is partIn the extreme case, for example, a public-private key pair a
of the binding keyln this case, to deposit a binding, an ownepriori must be generated for each id and distributed. With an
simply inserts a signed binding (using its private key) thge id space of, say, 160 bits, this is clearly not scalable.
with its certificate into the binding service. The advantafje =~ We now illustrate how one can build generic secure
such an approach is that the binding service becomes nothitigding service using IBE that doewot rely on PKIs for
but a repository of the signed bindings, no additional sgcur security. In addition, our approach is robust against tharfm
mechanism needs to be provisioned. However, such a PKi-the-middle” binding poisoning attacks. The basic idaes
based approach isot robust against the “man-in-the-middle”as follows. For an ownet who wants to insert a binding (a
binding poisoning attacks, when the (certified) owner idgnt (key, val ue) pair), it employs IBE to encrypt the binding,
is not part of the binding key — a necessary requirement féegether with asecret symmetric keyfor a pre-specified
a genericbinding service. To see why this approach fails teymmetricencryption scheme such as AES) andamce(e.g.,
satisfy the two security requirements posed earlier, camsi a random number), using the hashedidg.,, and sends the
an “imposter” who also has an RSA key pair certified by thencrypted binding insert message to the binding servick wit
CA, and interposes itself in between users and the binditlye targetdy.,. The “root node” ofidy., retrieves the private
service. This attacker can intercept either the bindingrins key corresponding tédy., from the PKG and decrypts it. If
message from a binding owner or the query reply returnélae insertion is successful, it returns a confirmation nmgssa
by the service, replace the original signed binding to a Bogaontaining the nonce encrypted with the secret symmetric
one signed using its own public key, and change the attache&y. Otherwise, a failure message is generated. From the
certificate with its own. Neither the binding service nor ngse confirmation message, the user can verify that its binding is
have any way to detect that the received binding has beiedeed inserted into the binding service successfullyehike,
tampered and is bogus. To circumvent this problem, a uder a user to look up this binding, it simply generates a query
has to generate an RSA key pair for each binding key (oressage together with a secret symmetric key and a nonce
sub-key) string that it might want to bind, and asks the CAncrypted usingdi.,, and sends the encrypted binding query
to certify the corresponding public key. This requires eith message to the binding service wiitf,., as the target. The
the user to anticipate all such bindings and have the CA hinding service returns a reply message containing theirignd
issue certificates beforehand, or the CA to be available &ud the nonce encrypted using the symmetric secret key. By
the time such a certificate is needed. In either case, it is rsotccessfully decrypting the reply message and verifyireg th
very scalable, in particular, in a dynamic environment vehenonce, the querier can be assured that the returned binsling i
bindings are generated frequently and on-demand. indeed authentic. Any imposter interposed between thesuser
An alternative solution is to create secure channels betweand the binding service will not be able to tamper or inject
users and the service such that all operations are carried Bagus bindings into the service, nor return such to queriers
over secure channels. Such an approach is robust agajgst_ . .
“man-in-the-middle” attacks as attackers can no longesrint & b'SCUSS'On and Other Related Work
cept messages and inject bogus information at will. However Namespace management is a peyicy issue in any binding
service: who owns a name (or key) and has the right to bind the
3We note here that the SFRtags used in Semantic Free Refegend@Mme (key) to a value? In this paper we attempt to separate
(SFR) [6] (also the immutableut / get operations of the OpenDHT), on such policy issues from the basic mechanisms for building

the other hand, is robust against the “man-in-the-middlggicks. However, gecyre. scalable and robust binding services. vdiithe same
due to the use of the “self-certifying” key technique (whéne SFRtag is a ’ ’

secure hash of the value (e.g., URI) to be looked up and anguhtic key UME providing the necessary “plug-ins” or interfaces to the
of the owner), SFR (also OpenDHT with immutalgat / get operations) is nhamespace and policy management modules. In other words,
nota binding service in its usual sense, as in a binding servieding key thege poIicy management modules, albeit an indispensable

(e.g., a phone number) may be bound to any legitimate bindahge (e.g., oo . . M
IP address) and vice versa. Furthermore, SFR still requirsscure binding part of any blndlng service, are made exogenous” to the

service to bind the public key to the owner of a value to be dablp. basic operations of Vault. This is accomplished through a



root(idy) A root column ofidy,
Sk Symmetric Key
Ny Nonce from the user
Es, (M) Symmetric encryption of\/ using s
IBEf;k (M)  IBE encryption of M usingidy,
IBED (C) IBE decryption ofC' usingp
TABLE |
NOTATIONS

that we have as many columns ™) as pillars, where™

of the columns are placed at one end of #f& zones (i.e.,
they have pre-assigned id’s, 2", for i = 0,...,2™ — 1),

as “anchor” columns. Although this is not necessary, it rsake
our exposition easier.

required user registration process and separating the fit&t
time binding insert operation from subsequent binding tgda
operations so that user credential verification, namesfi@gg Here we describe user operations in Vault. Table | lists
right management, and other policy issues can be enforcedsgyne notations we used. Vault is used by two types of users:
invoking the appropriate policy management modules. The@enersof bindings andjuerierswho look up bindings stored
points will be further discussed in Section III. in Vault. This distinction is important to enforce security
Identity-based cryptography has been an active reseaddifl accountability in our system and to facilitate namespac
area in cryptology [4], [8]. IBE has also been used in se@nd other policy management. Before an owner can insert a
eral networked applications and systems such as IBE-ba&éeding into Vault, we require it to register with the system
email systems [4] and secure opportunistic communicatiohBe registration process serves several purposes: 1) ignass
in disconnected networks [9]. Secure-i3 [10] uses comstchi the user a unique user idd,, in the id space, and thereby
triggers based on secure hash mechanisms to prevent astacki0 a (logicaljhome columni.e., root(id,); 2) to establish
from launching attacks against the system. To the best of @it initial binding betweend, and certain user credentials
knowledge, our system is the first to combine IBE and DHT$/Ch as user name, password, organization etc., and stdre su
to offer agenericsecure binding service without the need opinding at the user’s home column; and 3) to provide a natural

Fig. 1. lllustration of Vault architecture with four pillarand twelve columns.

User Operations

a trusted third-party service such as PKI. interface with the namespace and other policy management
systems (which are outside of Vault).
. VAULT: ARCHITECTURE AND OPERATIONS Once an ownery has obtained and, and stored its

In this section we present the overall architecture armedentialcred, at its home column, it can insert, and sub-
operations of Vault. Vault is built using a two-level argdture sequently update or delete, bindings into Vault. To enable
that enables efficient key management as well as betteratontramespace management and policy enforcement, we require
over the service. At the core of the system is a special settbat binding insert operation always go through a user’sénom
nodes calledpillars that perform critical functions to ensurecolumn, which checks the user’'s credentials and interacts
the security and proper operations of the system. In paaticu with appropriate namespace management systems to ensure
each serves as a PKG in IBE. We assume that pillars dhat the user has the right to insert the requested binding.
highly fault-tolerant and are always available. Pillarsmmt To insert a new bindingB of key-value, (k,v), the user
directly interact with users of the system, and do not stote with id, and cred, generates an insert request; =
any user bindings. User binding management, storage aHﬂEfi (idy, credy,, B, s, n,). The user sends:; to Vault
gueries are handled by remaining nodes — catleimns— with id,, as the target. Upon receiving the request, the home
which form an outer ring (the column ring) using Chord. Asolumn ¢oot(id,)) processes it using Alg. 1 and forwards the
part of an infrastructure service, columns are assumed to rfequest to the targetl, = H(k), where H is a secure hash
trusted; but unlike pillars, they may be dynamically addefiinction. The request is then processedradt(idy) using
to or removed from the system. Fig. 1 shows an exampig. 2. Either a confirmation response containing or a
of a Vault architecture. Pillars form a logical (inner) rindfailure response encrypted using the secret symmetricskey
among themselves; they also act as logical separators dor piovided by the user is returned. Fig. 2(a) shows the steps
column ring, partitioning it into severalonesof equal size. taken for a binding insert request.

Each pillar manages one zone, generating and issuing th®nce a binding has been successfully inserted, subsequent
private keys forid’s that fall within its zone. For instance, binding update or deletion can be carried out using two nodes
suppose we have an-bit id space, and®™ pillars. Then direct and indirect. In the direct mode, the user encrypts a
the column ring is divided int@™ zones of size2”~™: for binding updateB’ = (k, v’) using the secret symmetric kay

1 =0,...,2™ — 1, the ith zone contains the portion of theestablished with Vault earlier, and sends the encryptedtapd

id spaceZ; = [i-2""™, (i + 1) - 2"~™) managed by the requestyny = E;, (B’,n.,), to Vault with idj, as the target.

ith pillar P;. To bootstrap Vault, for simplicity we assumeUpon receivingmy, root(idy) looks up the symmetric key
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(b) Binding Update (Direct versus Indirect)

Algorithm 1 | NSERT at Home Columnzroot(id.,)

1: on receiving a binding insertiotid.,, mr);

2. pkey := get_key_from_cache(id.,);

3: if (\pkey) then

4:  pkey := get_key_from_pillar(id.,);

5: end if

6: (idy,credy, B, sk, ny) 1= IBEfkcy(wu);
7: if cred, matches user credentitiien

g

9

consult namespace management policy to verify the owreishB;

if verification = SUCCESS$hen

10:  idy := H[B.K|;

11: mr o= IBEiEdk(idu, B, s, n4);

12: 8igroot(idy) ‘= gen-signature(mr);
13: send(idy, M1, $i9root(idy)) 10 root(idy);
14:  endif

15: end if

Algorithm 2 | NSERT at Column:root(idy)

1: on receiving a binding insertiotidy, m 1, $igroot(idy )):
2 verify sigroot(idy):

3. pkey := get_key_from_cache(idy);

4: if (Ipkey) then

5. pkey := get_key_from_pillar(idy);

6: end if

7: (idu, B, sg,nu) := IBEL, . (m1);

8: if B.k exists in the binding tabléhen

9:  retunr; := E., (BI NDING.COLLI SI ON, ny,);
10: end if

11: Storeidy, id., B, sk;

12: Set timer forsy;

13: returnr; := E,, (I NSERT_SUCCESS, n,,);

root(idy)

(c) Binding Query

lllustration of user operations

the target id. Whemoot(idy,) receives the request, it decrypts
the request (upon obtaining a private key from the pillad an
checks if it has a binding with a key k stored. If B exists,
root(idy) encryptsB andn,, usings; and sends the reply back

to the user. If not, a failure message is generated by eringypt

a Bl NDI NG_NOT_FQUND response and,, with s;. Fig. 2(c)
shows the steps in the binding query operations. Because
IBE operations are computationally expensive, as a general
design principle, we only use IBE for tHest time id-based
communication; symmetric encryption is always used for the
reverseor subsequentommunications by including a secret
symmetric key in the first-time forward IBE channel. The use
of secret symmetric keys prevents attackers from returainyg
bogus messages and the (random) nonces included in user
requests allows the user to distinguish between messages an
to defer replay attacks.

B. Internal Operations

We now describe the internal operations of Vault to ensure
the security of the system. Since Vault is an infrastructure
service, only authorized nodes (columns) which have pre-
assigned id’s can join Vault. A column with a pre-assigned
id is also given the private key corresponding to its id, whic
is used to generate a signature for identity authenticatith
to sign its messages using aentity-based signatur@BS)

usingidy, and decryptsny, and updates the binding. Indirectscheme [8]. Using IBS, other columns in Vault can verify the
update mode is used if the symmetric keyis expired and authenticity of its id before allowing it to join Vault. For a
works in a similar manner as the binding insert operatiosolumn to join Vault, we assume it knows at least one existing

the request is sent tal, first before being forwarded taiy.

column currently active in Vault for bootstrapping purpose

Fig. 2(b) shows the steps for binding update in the direct Having a pre-assigned id and proving its authenticity, how-
and the indirect modes. The binding delete operation workser, is not sufficient in warranting a column to retrievevaté

in exactly the same way as the binding update operatidgys from pillars. A key design challenge in Vault is to
except that the binding is deleted byot(idy). Since no IBE ensure that a column must be able to prove to a pillar that
operation is invoked, update and delete in the direct modeitiSs currently activein Vault, and is indeedesponsible for

far more efficient, thus it is particularly suitable in a dymia
environment where frequent updates are required.

the id space ranget claims. To address this challenge, we
devise an innovative mechanismsecure bond- to enable

Queriersare in generahot required to register with Vault. neighboring columns to securely bond to each other and lock
In other words, any user is allowed to query Vault for bindingin the portion of the id space each owns. This secure bond
To query a bindingB with a binding keyk, a querier sends between neighboring columns is created by usiwg-way
a query request containing a secret symmetric key,, and hash chaingonsisting of two secure hash chains, one in each
a random nonce,, encrypted withid, to Vault with id;, as direction. Recall that a hash chain is a crypto-primitive in



pillar

in the forward direction. We have thdf; = HJJF[FO] =
HJf+1[F*]. Similarly, j's reverse zone secref contains a

tuple (R, I[,;, Jf%), whereJ [ = Jr — J[. We note that the
forward and reverse relative jumps between two neighboring
columns are the same in each direction, i§.,; = If*,;, and
the sum of all relative jumps equals -
Algorithm 3 Secure Bond using Two-Way Hash Chains
1: /Isecure bond betweery, its pred. i, and its succ.k;
2: ¢F = (Fy, IF,;, T
. . . 3 ¢t = (R L T
Fig. 3. Secure Bond using two-way hash chains. 4: licomputecr, sz’ line 5-13
. . 5. 17 = o(log(|id; — id, ; Nlogarithmic jump with some scaling factor
which a root valuer, can be used to derive all later valugs g i+ = pr s — D)oo e ’
for i > 0 by repeatedly applyindf (e.g., SHA) torg. Avalue . ;" i
D Fii=H I=FR[E];
R

r; in the chain can be used to derive all later valugdor o . _ H Ry
j >, i.e.,r; = H'7*[r;] wherej —i is the number of times o: j/ .= JF + szjk;
we applyH to r; in order to obtain;. However,r; cannot be 10: Ji := J;i* + ;7 ;;

; : P ; . 11: send¢f = (Fy, IF ., J¥') securely tok;
used to generate earlier values in the chain since invettiag 2 sendc? i— (R, 17 17 securely toi
secure hash function is computationally infeasible. Wemef 13; gorerr v '

y H . . JI—k
to j as the (absolute) jump of; (from ry) and the valug —+
therelative jumpfrom r; to ;. Givenr;, r; for j > ¢ and the

relative jumpj — ¢ between them, we can use one value tg h ) Jf h lumi (relati h |

verify the other by computing;...., = H/~[r;] and compare own the position of the columy (relative to other columns)

Y with 7, in the zone. To see why this is the case, suppose that the
emp .

We now show how we use the two-way hash chains fé)lumnj_wants to move i_ts p_ositi(_)n in the zone.jfwan'Fs
construct the secure bond between neighboring columns. foMove In :[he forward /dlrectlc_)n, it can do so by creating a
better illustrate this concept, we give an example usingehr€W Valuer’ such thatt; - Fj in the F-chair. This means
columnsi, j, andk located in the same zone such thag ;'s columnyj must increase its aRsqute Jurdgf to a larger value
predecessor, and s j's successor. We assume each zone hdg’ > JI* so thatF] = H”’; *'[F*]. Since the total jump
a fixed total jump/; that is proportional to the logarithmic ofin a zone is fixed at/z and J/* = Jr — JI', an increase
the size of the id space each zone“ass shown in Fig. 3, in JJF means a corresponding decrease]jﬁ. This requires
the pillar issues root valueg, = H[F*| and R, = H[R*] column; to obtain a smaller value oR} < R; in order to
to two columns at two ends of its zone, whefé and R* “move” successfully in the forward direction. However,ghi
are two secret values known only to the pillar. These twis not possible due to the properties of the secure hash.chain
columns then pass some secret information derived ffgm Similarly, j cannot move in the reverse direction as it cannot
and R in the forward and the reverse directfprand create obtain a smaller valué’; < Fj. Thus, each column'$’, R,
two hash chains in the zone, tlié-chain (forward) and the and.J values enforce each other amdiquely determines a
R-chain (reverse), respectively. We first establish Frehain column’s position (relative to other columns) in the zohe
before we establishR-chain. When a columrj receives a addition, a column cannot fake the position of its predemesss
forward zone secret{f ) from its predecessor (columi), it and successors.

Given F;, R;, JF and the total jumpJy, we can pin

computes a relative jump!”_, to its successok. Column However, simply pinning down a column’s relative position
then generates a negff USinng_)k, and passes it securely toin the zone does not tell us the portion of the id space it owns.

the successok. This process is then repeated at the successéf€ utilize j's predecessof to obtain this information as each
and so on. Once th&-chain is established, we pass reverseolumn’s id space range is determined by its own id and its
zone secretg’ from successors to predecessors using tfgedecessor’s id. To do so, the predecessor (colinpasses
relative jumpI®(=I*, the forward relative jump) to establisha timed token T; encrypted using pillar’s idd, to column
the R-chain. Alg. 3 gives the details of the computation ang The token includes the following informatiod;, R;, J;,
passing of forward and reverse zone secrets from coljiton id;, and a timestamy, i.e.,T; = IBEf; (Fi, R;, J[id;,ts).

its successok and its predecessoyrespectively. The forward (The signature of columais included as part of its id). The

zone secref!” of the columnj contains a tupléF;, I ;, JF) token is periodically refreshed with a new timestampThe
where F: = HIE [F)), IF.. is the relative jump chosen pillar can then use this information to authenticate andfywer
Jj = iy Li—j . . . . i
by i to its successof, and J¥ is the absolute jump of a column before issuing private keys. The token is also re
J generated and passed to the new successor when a predecessor
“Hence the hash chain can be computed in polynomial time,ithe has detected that an old successor has left the system and/or
number of bits of the id space. a new successor has been established.

Sforward means counterclockwise amdversemeans clockwise, we use
superscriptF’ and R to denote these two directions SHere b - a means thab has a bigger (absolute) jump than



h | . . . k £ Operations Overhead
When a co umnj wants to retrieve a private key for some SyRwetric.encrypt | 4L us
idkey from the pillar, it sends a key request messagge by symetri c.decrypt 26 ps
di ‘| . the foll ina: the f d d | BE_Lkey_gen 22 ms
isclosing the following: the forward and reverse zone eiscr | BE encr ypt 32 ms
F; and R;, the jump.J/” and I ;, and the timed tokeff; as I BE.decr ypt 25 ms
well as its id ownid; (with its signature) to the pillar securely. TABLE |I
Key request operations are carried out over secure chaasels COMPUTATIONAL OVERHEAD FOR CRYPTGPRIMITIVES.

a user would do for binding operations (thus protecting the

operation against man-in-the-middle attacks): the colymn

encrypts the above information together with a symmetric k& Further Enhancements

and a nonce with the pillar iél,; the pillar returns the private  \We briefly discuss several enhancements to Vault that can
key and the nonce back using the symmetric key. As thigrther improve Vault's performance and offer additionat s
operation When the pillar receives the key request, it chedkurity. Vault inherits its scalability and robustness fr@HiT.

the timestamp in the token to determine if the colunis  However, as we will demonstrate in Section 1V, due to the
active in Vault at the moment, and obtains its predeces&br’s computational overhead of IBE and relatively large network
Together with the columyi’'s own id, the pillar can determine latency, the overall performance of Vault needs to be imgdov
the exact portion of the id space the colunirowns, and in particular, to handle sudden surges in request loads asich
determine whether the columpis indeed responsible for the“flash crowds”. We address the latency issue by introducing
requested key iddy., (see Alg. 4). (Note that the id's of the concept ofocal (Vault) proxiesand query delegationA
both columnsi and;j can be verified by the pillar using theirjocal proxy is a (trusted) column in Vault is located in close
respective signatures.) Since the token from the colyfan proximity to a user (or a group of users) that can perform
predecessor is periodically refreshed, after the colynimas query requests on behalf of users and cache returned binding
left Vault after some time, it can no longer retrieve privatgsimilar to that of the local DNS), thereby considerably
keys from the pillar. reducing the network latency for subsequent queries on the
cached bindings. We udeinding delegationto handle flash
crowds. Binding delegation enables a column (sayf(idy))

to replicate a binding it owns to a subset of columns it cheose

Algorithm 4 Key Retrieval at Pillar

1: on receiving key requestl;, mg for idye, from j;

2° phey :— gen_private_key(id, ); lican be stored for later use It also deleggteg certain private keys derived from theapeiv
3 (Fy, Ry, Ty, J7 15, ) == IBEE, . (mR); key for the binding to these columns so that they can answer
. F T D - . . . . . .

‘5‘: i(ff?’?s’{i{(v;i‘éit’htgg = IBEp, (T;); queries on behalf ofoot(id;,). The binding replication and

6 it Fy— HJiF;l (F*] and R; — HJTFfJiFerR*] then delegation can be dc_>ne_ either in a pre-arranged _fash|on or on
- it By = H'Eo3 ()] and R = H'=3 [R,] then demand. Note that binding delegat_|on_ allows multiple <_:0_i8m

S; if idiey € (ids,id;) then to answer queries for the same binding, thereby avoiding the
10: f’eﬁjﬁ’r{pgeg‘j"gggjfe‘f;‘;’;fy(“i’“y)’ single point of failure. Finally, although Vault may stilleb

i% 3me if vulnerable to compromise (say, by insiders or due to other
13 endif vulnerabilities outside the design and control of our sydte

14: end if given the built-in accountability and security in Vault,cbu

attacks can plausibly be detected more easily with addition
monitoring and defense capabilities for identifying insisA
Once the initial two-way hash chains have been establisheghcy, misuses, and anomalies. Due to the space limitation,
£ andR values for each column remain fixed and do not negg refer interested readers to a technical report versidhisf

to be re-calculated regardless of column dynamics (jam8¢. paper [11] for more details on enhancements.
When a new columm joins the system between columns

j and k, it first requests a forward zone secrets from its IV. EXPERIMENTAL EVALUATION

predecessoy. The columnj computes a new relative jump

IF (< IF.,), the corresponding/”, and the relative jump In this section we present evaluation results from a prpiety
IF_, from h to k for h. The columnh then computes a implementation of Vault that has been deployed and tested on

new C;f for h's successok based Onl,fﬂk. By maintaining the PlanetLab as well as in our local network.

the relative jumpI/,, = I, + I ,, the columnk’s
F value remains constant. On receivigfj, k¥ computes(/
using the new relative jump?® , (=If ,) and so on. When We start with the experimental results we have obtained
a column leaves the system, its predecessor and successas local testbed located in a local area network. These
contact each other and calculate the relative jump betweexperiments allow us to evaluate the computational ovelhiea

them so that consistency is maintained. For examplej ifof Vault operations, and how they are affected by the number
leaves the networkh now becomes the direct successor abf nodes (pillars and columns) as well as user request loads,
i, and the relative jumg?,, betweeni andh should be the while without accounting for the potential impact of (wide-

1—h
sum of I ; and I}, area) network latency.

A. Local Experiments
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Fig. 4. System Response Time in Local Experiments

User | Column | Pillar

Tsert s 57 ms T 73 ms a reply from Vault is received. Fig. 4(a) shows the average
(Direct) Update/Delete| 37 us | 60pus | N/A system response (measured over a 15-minute duration) as a
Query B3ms| 25ms | NA function of binding insert request rate when different nemb
TABLE I of pillars is used. The results show that as we increase the
COMPUTATIONAL OVERHEAD FORBINDING OPERATIONS number of pillars, we improve the response time of Vault in

handling binding insert requests. To better demonstrate th

i . oint, Fig. 4(b) shows the distribution for the pillar resge
We first measure the computational overhead of IBE cryptﬁfne L tr?e ti(mze immediately after a column sgnds outlsa key

primitives (as implemented in the Boneh-Franklin IBE liya retrieve request until the time the private key is returned &

and compare them with the symmetric crypto-primitivesigsi r%quest rate of 30 inserts/second. Similar patterns fopiller

AES). We use the Time Stamp Counter (TSC) on a Pentium ) L
response time distribution are observed for all other rsgue
2.4GHz Processor to count the number of clock cycles take : )
rates. As we can see, by adding more pillars to the system

by each crypto-primitive ar_ld divide it by the CPU frequenc‘yvﬁ can reduce the overall load imposed on each pillar, thus
to measure the computational overhead. The input to eac

primitive is similar to what is used in Vault operations. F0¥|eld|ng faster overall system response time.
example, we use 160-bit ids as inputs to measure the overheafio investigate the impact of the number of columns on the
of IBE private key generation. Table Il shows the overhead ¥erall system performance, we use a setup with one piltar bu
each crypto-primitive as the average of 30 runs. It is cleat t vary the number of columns from 5 to 8 machines. We use the
IBE is far more expensive than the symmetric cryptosystenperformance of query operation as a representative example
Next we measure the computational overhead of Vault Ogustrate the results. To evaluate the query performanee,
erations. For this we use a simple set-up with three machind&t insert 5000 random bindings to the system and generate
one as pillar, one as column and one as an end host. gyeries for these bindings uniformly at different rates). Bi(c)
binding insertion, we use the user id, as the binding key Shows the result of query rate versus the (average) system
(e, id;, = id,). We also allow the column to cache thd€Sponse time (again over a 15-minute period), with 1 pillar
private key of the id once is retrieved from the pillar. Henc@nd varying number of columns. Using only 5 columns, the
for binding update and delete in the direct mode, no IBRVerage system response time starts to increase sigrificant
primitives are performed. Table 1l shows the computation@nce the query rate reaches 80 query/second. With 7 or 8
overheads of each Vault operation as measured at user, coll§@lumns and only one pillar, the system can handle up to
and pillar side. The results are obtained as the average of B8 query/second before we start seeing some increase in
runs for each operations. We omit the results for updatetelelthe average system response time. Furthermore, the average
in indirect mode as they are similar to that of binding insefiyStem response at 200 query/second is lower than that of
operations. The results show that the computational oeerhé columns and 1 pillar at half the query rate, namely, 100
for each binding operation depends largely on the numbddery/second. Similar observations hold for direct update
of IBE operations each entity needs to perform. The ué@d delete operations with results showing around 500 times
of symmetric crypto-mechanism for binding update in diredProvement due to the use of symmetric crypto-mechanism.
mode significantly improves its performance. Lastly we evaluate how binding delegation (see Section IlI-
We now illustrate how the number of pillars influence&C) can improve the system performance, especially under
the performance of Vault operations. We use four machindtash crowds” — when most users query for the same binding.
as columns and vary the number of pillars from one tBor this experiment, we first set up a system with 1 pillar and 8
four. A number of other hosts are used to generate randemlumns, with each of them serving some background queries
binding insert requests at various rates. We measure thensysat 5 query/second per column. We emulate the flash crowd
response time, defined as the lapse from the time immediateffect by generating queries that target a specific binding
after a user sends out a binding insert request to the timehigh rates. Without binding delegation, all these querie



mean (std)

must be handled by one column. We see that at the rate of CPU | TBEkey gen | TBEencrypt | TBEdecrypt
35 query/second for the target binding, the average system (GHz) (ms) (ms) (ms)
. . . L 1.8 57 (27) 83 (35) 58 (16)
response time quickly jumps beyond 500 ms. By replicating 24 188 (139) 241 (94) 202 (118)
the binding to 7 other columns and thus serving queries for 2.8 102 (38) 133 (31) 106 (35)
oo : 3.0 125 (98) 155 (73) 127 (56)
this binding at 8 columns instead of one, the system response 3.06 118 (103) 155 (64) 114 (41)

time reduces to around 100 ms even if we increase the query
rate for the target binding to 100 query/second. (Due toepac
limitation, we do not present the detailed plots here.) We se

TABLE IV
COMPUTATIONAL OVERHEAD IN PLANETLAB MACHINES

that binding delegation is an effective way to improve the System - operation] Mean (ms) | 957" %
overall system performance, in particular, under flash dow Vault - Insert 725 733
. . . Dummy V. - Insert 601 617
From our local experiments, we show that without consid- Vault - Query 494 497
ering the potential impact of (wide-area) network laterthg, Dummy V. - Query 346 347
computational overheads of Vault operations are dominated TABLE V
by IBE crypto-primitives, the price we pay for added segurit SYSTEM RESPONSET IME FOR VAULT AND DUMMY VAULT.

However, by using “IBE-only-once” principle, we can employ

symmetric encryption mechanisms for binding update/delet

operations to significantly increase their performancettfeu- Each experiment then lasts about 45 minutes. Similar to the
more, we can scale the system performance by increasing @@l testing, we measure the overall system performarce fr
number of columns and pillars. In addition, binding delegdDe users’ perspective: the system response time is mekasire
tion can further improve the overall system performance, [APse from the time immediately after a user request gesetrat

particular, under flash crowds. to the time a reply is received.
_ As a representative example, Fig. 5(a) shows the cumulative
B. PlanetLab Experiments distribution function (CDF) of the system response time for

Here we present the evaluation results from the PlanetLbinding insert operations that are generated uniformlyrate
deployment. We deploy Vault using from around 80 to 100f 15 insertion/second by users. We see that the mediamsyste
nodes on the PlanetLab as columns and pillars, and @@sponse time (50% percentile) reduces from just below 0.8
additional number of nodes are also used as users of Veggiconds to 0.6 seconds when the number of pillars is inalease
to generate binding insert, update, delete and query resjueom 4 to 8. However, there is almost no difference when the
These nodes are geographically dispersed on the Internet.number of pillars is further increased from 8 to 12, suggesti

Since PlanetLab nodes used in our experiments have valfye pillars are not the performance bottleneck. Fig. 5(lojxh
ing processing powers and are heavily loaded with matiye CDF of the system response time for query operations
experiments running concurrently at any given time, we firgising the experimental setting of 75 columns and 8 pillane T
measure the time it takes for these PlanetLab nodes to exegiery requests (the binding keys) are generated from either
IBE crypto-primitives. The measurement is done similar t@ uniform or a Zipf distribution witha: = 0.91 (this value
our local testing by measuring CPU clock cycles. Table 116 chosen to to mimic typical DNS loads [7], [12]). From
shows the results for several PlanetLab nodes with differghe figure we see that there is virtually no difference in the
CPU speeds, where each value is the average of three nderigormance under these two distributions. In all cases)rat
at the same CPU speed at different time of the day for&% of queries are answered within 0.6 seconds and the mean
total of 500 measurements. The standard deviation is giveuery response time is around 500 ms. We have also conducted
in the parentheses. Comparing with Table 1, we see that tBgperiments using different user request rates and differe
PlanetLab nodes perform much worse than local machinesimber of columns (from 75 to 100). Due to space limitation,
In addition, faster machines does not necessarily give Wwe do not present the results. The general observations are
better performance. The relatively large standard denatlso that under modest user request rates, increasing the nwhber
reflects the time variability in executing the crypto-priiveés pillars and columns improves the overall system perforraanc
due to fluctuating CPU loads on the machines. initially; however after a certain threshold, further ieasing

We now present some experimental results regarding tie number of pillars or columns does not yield any significan
overall performance of Vault on PlanetLab. For these expdrerformance improvement. Comparing these results witeetho
iments, 75 PlanetLab nodes are used as columns and @hehe local testing, it leads us to suspect that the wide-
number of pillars are varied from 4, 8, to 12. Additionafrea network latency becomes a more dominant factor in
PlanetLab nodes are used to emulate a large number of ustgtermining the overall system performance.
of Vault to generate binding insert/update and query regues To investigate the wide-area network latency, in particula
For each experiment, a different request rate is generated@hord message routing latency, we implement a “stripped
users from a certain distribution of binding keys. Beforetea down” version of Vault — referred as thBummy Vault—
set of experiments, we stop and restart Vault and allow a JWwhich mimics the message routing pattern of Vault but does
minute initialization and stabilization period to estahlizone not execute any binding and key retrieval operations. Hence
secrets and ensure the system is stable and operates lgorrabe system response time of Dummy Vault includes mostly the
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Fig. 5. System Response Time on the PlanetLab

wide-area network latency in routing messages. To acdyratby query delegation and caching.
measure the network latency, we run Vault and Dummy Vault
at the same time and send back-to-back binding requests to
both systems. Fig. 5(c) and Table V compare the systemln this paper we have developed a novel approach in build-
response times of Vault and Dummy Vault (Dummy V. iAng agenericsecure binding system as a (trusted) infrastruc-
Table V) for binding insert and query operations, where botHre service by combining IBE and DHT. In building such a
systems contain 8 pillars and 75 columns. We see that Ch&xgtem — referred to as Vault, we have also developed several
message routing |atency indeed contributes a predominmﬂovative mechanisms to address various important design
portion (in general over 70%) of the overall system respond&d implementation issues. A prototype implementatiomef t
time. Similar results also hold under other system settings System has been deployed and evaluated on the PlanetLab as
Since the wide-area network latency (in particular, Choitiell as in a local testbed. We believe our approach explores a
routing latency) plays a dominant role in the overall systeffeW dimension in constructing generic secure binding syste
response, in the final set of experiments we investigate tA@d our system can be used as a fundamental building block
performance benefits of query delegation vidoaal Vault to facilitate the development of next generation networkd a
proxy. For this, we use a PlanetLab node located on olftwork applications.
campus network as the local Vault proxy. We set up several REFERENCES
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