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Abstract— Binding services are crucial building blocks in
networks and networked applications. A binding service (e.g., the
Domain Name System (DNS)) maps certain information, namely,
binding keys (e.g., host names), to other information, i.e., binding
values (e.g., IP addresses), and answers queries for suchkey-value
bindings. Clearly, building secure binding services that ensure
the integrity and authenticity of bindings are vital to the correct
operations of many networks and networked applications.

In this paper we present a novel approach for building
generic secure binding services that allowarbitrary key-value
bindings as (trusted)infrastructure services to support a variety of
networks and networked applications. We combine theIdentity-
Based Encryption (IBE) crypto-mechanisms with distributed hash
table (DHT) techniques to develop an innovative architecture
for building scalable, robust and secure binding services.Using
this architecture, we implement a prototype system calledVault
and evaluate its performance both in a local testbed and on the
PlanetLab.

I. I NTRODUCTION

Binding services are crucial building blocks in networks
and networked applications. For example, the domain name
system (DNS) binds host names to IP addresses, providing
an indispensable infrastructure service to Internet applications.
In (SIP-based) VoIP services, registrars/location servers are
needed to map users’ names (SIP URLs) to appropriate SIP
proxy servers for signaling and other purposes. In general,
a binding service translates some keys (binding keys) into
corresponding values (binding values), i.e., eachbinding is
a 〈key, value〉 pair associated with a user – theownerof
the binding – that utilizes the service. In a sense, a binding
system is aspecializedlook-up or directory service where the
notion of ownershipof binding is essential: each binding has
an owner (the client who registers the binding), and only the
owner can update or delete the binding. In this paper we are
especially interested in building agenericbinding service –
where we placeno restrictions on the syntax or semantics
of binding keys – in particular, the identity of an owner
of a binding may not be part of the binding key1 – as a
(trusted)infrastructureservice that can be shared by a variety
of applications.

1The conventional DNS hostname to IP address binding is an example
where the binding key, e.g.,host.foo.com, (typically) contains the owner’s
identity, herefoo.com, due to the hierarchical namespace of DNS. On the
other hand, reverse DNS look-up is an example where the owneridentity is
not part of the binding key, here an IP address. Other examples include SIP
registration which binds a phone number or an IP address to a SIP proxy, or
location service (e.g., in wireless networks) that binds a phone number or an
IP address to a geographic location. There are many other situations in real
life where we want to bind certain keys to other pieces of information where
either the owner identity is immaterial or concealed, whileat the same time
the authenticity of the bindings must be preserved.

Clearly, security is a key concern in building a binding
service over an (untrusted) wide-area network, as integrity of
bindings is often vital to the correct operations of networks
and applications that rely on it. In building a (generic)secure
binding service, there are twominimum requirements: i) as
stated earlier, the service must ensure that only the owner of
an existing binding can update or delete the binding; and ii)
users of the service must have the guarantee that the bindings
returned to their queries must indeed be the correct bindings
deposited into the service by the owners. To meet these two
requirements, a secure binding service must be robust against
“man-in-the-middle” binding poisoning (e.g., DNS poisoning)
attacks, where “imposters” interposed between users and the
service cannot alter binding insertion requests from owners
to the service or binding query replies from the service to
the queriers. In addition, a (generic) secure binding service
must also be scalable and robust. The combination of security,
scalability and robustness makes building a secure binding
service a challenging task.

In this paper we develop a novel approach for building
generic secure binding services as (trusted)infrastructure
services to support a variety of networks and networked
applications that require secure binding as a core function.
The generality of our secure binding services comes from
the adoption of asemantic-free, flat“identifier” (id in short)
space [1] as the intermediary for bindings. This allows us to
separate the more complex,policy issues such asnamespace
managementissues (e.g., name structure, ownership, etc.) from
the basicmechanismsfor building secure binding services.
It also allows us to employ distributed hash table (DHT)
techniques (e.g., [2], [3]) for building highly robust and
scalable distributed systems. The keynoveltyof our approach
lies in combining theIdentity-Based Encryption(IBE) [4] with
DHT techniques to develop a secure binding (infrastructure)
service – referred to asVault. Vault is robust against “man-in-
the-middle” attacks and the security of Vault does not rely on
exogenoustrusted third-party such as PKI or requiring users
to have their own public key pairs.

As an infrastructure service, Vault is built using a two-level
architecture: at the core of the system are a number of special
nodes (computer systems) calledpillars, which are assumed
to be highly fault-tolerant, and play a critical role in ensuring
the security of the service, which includesprivate(decryption)
key generation [4]; they do not directly interact with usersnor
store their bindings. These functions are performed by the rest
of the nodes calledcolumns, which form a ring structure using
Chord [2] and may be added to or removed from the system



dynamically. A user who wants to insert a binding or query
for a binding encrypts its request using thebinding key id(a
hash of the key), and sends the encrypted requests to Vault;
only corresponding node (column) in Vault that owns the key
id can decrypt the request, perform the requested function,and
reply to the user in a secure manner.

There are many challenging design and implementation
issues in combining DHT and IBE to develop a scalable, robust
and secure binding service. First and foremost, to provide
the security and trustworthiness of Vault as an infrastructure
service, we must ensure only authorized nodes (columns) can
join Vault, and only active columns (those are part of Vault
at a given time) can decrypt user requests, store bindings
and answer queries. To address these issues, we develop an
innovative mechanism calledsecure bondthat allows a column
to prove to pillars that they indeed own a requested key id so
as to retrieve the corresponding decryption key. Furthermore,
because IBE operations are computationally expensive, effi-
ciency is also a major concern. In addition, although this paper
focuses on the basic mechanisms for building secure binding
services by separating the policy issues as “add-ons”, we do
take the importance of policy issues into account by providing
the necessary interfaces and “plug-ins”. In the remainder of
this paper we present the design and implementation of Vault,
and discuss how these issues are addressed. In the next section
we present what is IBE and illustrate why IBE is uniquely
suited for building secure binding services using DHTs. In
Section III we explain the Vault architecture and operations as
well as some further enhancements. In Section IV we evaluate
the performance of a Vault prototype we have deployed both
in a local area testbed and on the PlanetLab. The paper is
concluded in Section V.

II. BACKGROUND AND MOTIVATION

In this section we briefly explain what is identity-based
encryption (IBE), and motivate why IBE is particularly suited
for building secure binding services using DHT techniques
with a flat identifier space.

A. Identity-Based Encryption

Originally proposed as a means to simplify certificate man-
agement in email systems [4], identity-based encryption (IBE)
allows any arbitrary string (e.g., email address or other user
identifiers) to be used as the public key. The corresponding
private key is generated by a central authority (called the
private key generator, or PKG in short). For example, if Bob
wants to send a secret email to Alice, he encrypts the email
using Alice’s email address (i.e., her identity) as the public
key. For decryption, Alice first retrieves her private key from
the PKG and subsequently uses it to decrypt the email. Hence
in IBE, as long as Bob knows the identity (here email address)
of Alice, he can send an encrypted email to Alice. Whereas, in
the conventional public-key cryptosystems such as RSA, Bob
first needs to obtain the public key of Alice, and has a way to
ensure that the public key does indeed belong to Alice – hence
a certificate system (e.g., a PKI – public key infrastructure)

for validating public keys is needed. IBE obliviates the need
for such a certificate system. In addition, IBE enables what
we call asynchronoussecret communication that is crucial
to our construction of secure binding services: it allows one
to establish aforward secret communication channel (using
IBE for encryption) from a sender to a target identity, where
the sender does not need to have prior knowledge or contact
with the corresponding receiver; the private key corresponding
to the target only needs to be generated by the PKG on-
demand when the receiver requests for it. In contrast, in
the conventional public key systems such as RSA, a public-
private key pair must be pre-generated for each receiver before
communications can proceed. For a detailed description of
IBE, we refer interested readers to [4].

B. Secure Binding using DHTs: Why IBE?

Our goal is to build agenericsecure binding service as a
trusted infrastructure service, using which users can deposit
bindings (e.g., email address and location mappings etc.),and
query for bindings. As an infrastructure service, the service
must be scalable and robust. To this end, we employ DHT
techniques for building such a service. Note that our system
is not a ”peer-to-peer” system in the sense that it is not built
using end hosts of users. In fact, nodes constituting the system
are part of an infrastructure service: only authorized nodes can
join the system. In this paper Chord is used as our choice of
DHT but our approach can be easily extended to other DHTs.

The basic operations of a binding service using DHT are
very similar to those of any DHT-based look-up services:
a useru inserts (or “puts”) a binding (a〈key, value〉
pair) into the service by hashingkey to an id in the flat id
space,idkey , and sends the binding to the service usingidkey

as the target (i.e., destination). For a querier who wants to
query for this binding, it simply sends a query message to the
service usingidkey as the target and the corresponding value
is returned. To ensure the trustworthiness and basic security
of the service, we must guarantee the following: i) only the
owner of the binding,u, can update or delete the binding; ii)
the returned binding to queriers is indeed fromu. In particular,
a secure binding service must be robust underthe “man-in-the-
middle” binding poisoning attackmodel, namely, an attacker
interposed between users and the service cannot alter binding
insertion requests from owners to the service or binding query
replies from the service to the queriers.

One may argue that such service can be easily implemented
using traditional public key crypto-systems such as RSA or
other techniques. For example, OpenDHT [5] employs public
key crypto mechanisms for authenticatedput/get opera-
tions2. Unfortunately these authenticatedput/get operations

2Under the authenticated put/get mode, each owner has a public/private
key pair, denotedKP andKS , respectively. To insert a binding of key-value
(k, v), an owner sends the following to the service:k, v, KP , a noncen , an
expiration timet, andσ = {H(k, v, n, t)}KS

, where{X}KS
denotes the

digital signing ofX with KS andH is a secure hash function (e.g., SHA-1).
To retrieve the binding, a querier sends the following{k, H(KP )} to the
service and the service returns{(v, n, t, σ)}.



are not robust against the “man-in-the-middle” binding poison-
ing attacks, as the attacker may intercept theput message sent
by a binding owner, replaces the public key with its own, and
re-signs the message, and sends it to the service, which has
no way to verify the bogusput message3. Moreover, in order
for a querier to look up a binding using a binding key, it must
know a priori the public key associated with the binding key,
which in itself requires a secure binding service.

The public key infrastructure (PKI) can be viewed, in a
sense, as a secure binding service that binds a public key to
its owner with a certificate signed by a trusted third party, a
certificate authority(CA). Hence a PKI-based approach can be
used to build secure binding services (e.g., as used in DNSSEC
and CoDoNS [7]),provided that the owner’s identity is part
of the binding key.In this case, to deposit a binding, an owner
simply inserts a signed binding (using its private key) together
with its certificate into the binding service. The advantageof
such an approach is that the binding service becomes nothing
but a repository of the signed bindings, no additional security
mechanism needs to be provisioned. However, such a PKI-
based approach isnot robust against the “man-in-the-middle”
binding poisoning attacks, when the (certified) owner identity
is not part of the binding key – a necessary requirement for
a genericbinding service. To see why this approach fails to
satisfy the two security requirements posed earlier, consider
an “imposter” who also has an RSA key pair certified by the
CA, and interposes itself in between users and the binding
service. This attacker can intercept either the binding insert
message from a binding owner or the query reply returned
by the service, replace the original signed binding to a bogus
one signed using its own public key, and change the attached
certificate with its own. Neither the binding service nor users
have any way to detect that the received binding has been
tampered and is bogus. To circumvent this problem, a user
has to generate an RSA key pair for each binding key (or
sub-key) string that it might want to bind, and asks the CA
to certify the corresponding public key. This requires either
the user to anticipate all such bindings and have the CA to
issue certificates beforehand, or the CA to be available at
the time such a certificate is needed. In either case, it is not
very scalable, in particular, in a dynamic environment where
bindings are generated frequently and on-demand.

An alternative solution is to create secure channels between
users and the service such that all operations are carried out
over secure channels. Such an approach is robust against
“man-in-the-middle” attacks as attackers can no longer inter-
cept messages and inject bogus information at will. However,

3We note here that the SFRtags used in Semantic Free Referencing
(SFR) [6] (also the immutableput/get operations of the OpenDHT), on
the other hand, is robust against the “man-in-the-middle” attacks. However,
due to the use of the “self-certifying” key technique (wherethe SFRtag is a
secure hash of the value (e.g., URI) to be looked up and and thepublic key
of the owner), SFR (also OpenDHT with immutableput/get operations) is
not a binding service in its usual sense, as in a binding service abinding key
(e.g., a phone number) may be bound to any legitimate bindingvalue (e.g.,
IP address) and vice versa. Furthermore, SFR still requiresa secure binding
service to bind the public key to the owner of a value to be looked up.

it is particularly challenging to establish secure channels in
a DHT-based system using traditional public key crypto-
mechanisms. For example, we can use multiple RSA public-
private key pairs, each for one portion of the id space and
store private keys at appropriate nodes. When a user wants
to send a message to the system destined for someid, it
simply encrypts the message using the right RSA pubic key
and the node responsible for its message would decrypt the
message using the corresponding RSA private key. However,
this requires users to know which public keys to use for which
portion of the id space; when the number of such public-private
key pairs is large, it needs a secure binding service in itself
to manage such public key to (portion of) id space mappings.
In the extreme case, for example, a public-private key pair a
priori must be generated for each id and distributed. With an
id space of, say, 160 bits, this is clearly not scalable.

We now illustrate how one can build ageneric secure
binding service using IBE that doesnot rely on PKIs for
security. In addition, our approach is robust against the “man-
in-the-middle” binding poisoning attacks. The basic ideasare
as follows. For an owneru who wants to insert a binding (a
〈key, value〉 pair), it employs IBE to encrypt the binding,
together with asecret symmetric key(for a pre-specified
symmetricencryption scheme such as AES) and anonce(e.g.,
a random number), using the hashed ididkey , and sends the
encrypted binding insert message to the binding service with
the targetidkey . The “root node” ofidkey retrieves the private
key corresponding toidkey from the PKG and decrypts it. If
the insertion is successful, it returns a confirmation message
containing the nonce encrypted with the secret symmetric
key. Otherwise, a failure message is generated. From the
confirmation message, the user can verify that its binding is
indeed inserted into the binding service successfully. Likewise,
for a user to look up this binding, it simply generates a query
message together with a secret symmetric key and a nonce
encrypted usingidkey , and sends the encrypted binding query
message to the binding service withidkey as the target. The
binding service returns a reply message containing the binding
and the nonce encrypted using the symmetric secret key. By
successfully decrypting the reply message and verifying the
nonce, the querier can be assured that the returned binding is
indeed authentic. Any imposter interposed between the users
and the binding service will not be able to tamper or inject
bogus bindings into the service, nor return such to queriers.

C. Discussion and Other Related Work

Namespace management is a keypolicy issue in any binding
service: who owns a name (or key) and has the right to bind the
name (key) to a value? In this paper we attempt to separate
such policy issues from the basic mechanisms for building
secure, scalable and robust binding services, whileat the same
time providing the necessary “plug-ins” or interfaces to the
namespace and policy management modules. In other words,
these policy management modules, albeit an indispensable
part of any binding service, are made “exogenous” to the
basic operations of Vault. This is accomplished through a
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Fig. 1. Illustration of Vault architecture with four pillars and twelve columns.

required user registration process and separating the first-
time binding insert operation from subsequent binding update
operations so that user credential verification, namespace(key)
right management, and other policy issues can be enforced by
invoking the appropriate policy management modules. These
points will be further discussed in Section III.

Identity-based cryptography has been an active research
area in cryptology [4], [8]. IBE has also been used in sev-
eral networked applications and systems such as IBE-based
email systems [4] and secure opportunistic communications
in disconnected networks [9]. Secure-i3 [10] uses constrained
triggers based on secure hash mechanisms to prevent attackers
from launching attacks against the system. To the best of our
knowledge, our system is the first to combine IBE and DHTs
to offer agenericsecure binding service without the need of
a trusted third-party service such as PKI.

III. VAULT : ARCHITECTURE ANDOPERATIONS

In this section we present the overall architecture and
operations of Vault. Vault is built using a two-level architecture
that enables efficient key management as well as better control
over the service. At the core of the system is a special set of
nodes calledpillars that perform critical functions to ensure
the security and proper operations of the system. In particular,
each serves as a PKG in IBE. We assume that pillars are
highly fault-tolerant and are always available. Pillars donot
directly interact with users of the system, and do not store
any user bindings. User binding management, storage and
queries are handled by remaining nodes – calledcolumns–
which form an outer ring (the column ring) using Chord. As
part of an infrastructure service, columns are assumed to be
trusted; but unlike pillars, they may be dynamically added
to or removed from the system. Fig. 1 shows an example
of a Vault architecture. Pillars form a logical (inner) ring
among themselves; they also act as logical separators for the
column ring, partitioning it into severalzonesof equal size.
Each pillar manages one zone, generating and issuing the
private keys forid’s that fall within its zone. For instance,
suppose we have ann-bit id space, and2m pillars. Then
the column ring is divided into2m zones of size2n−m: for
i = 0, . . . , 2m − 1, the ith zone contains the portion of the
id spaceZi = [i · 2n−m, (i + 1) · 2n−m) managed by the
ith pillar Pi. To bootstrap Vault, for simplicity we assume

root(idk) A root column ofidk

sk Symmetric Key
nu Nonce from the user
Esk

(M) Symmetric encryption ofM usingsk

IBEE
idk

(M) IBE encryption ofM usingidk

IBED
p (C) IBE decryption ofC usingp

TABLE I

NOTATIONS

that we have as many columns (≥ 2m) as pillars, where2m

of the columns are placed at one end of the2m zones (i.e.,
they have pre-assigned id’s,i · 2m, for i = 0, . . . , 2m − 1),
as “anchor” columns. Although this is not necessary, it makes
our exposition easier.

A. User Operations

Here we describe user operations in Vault. Table I lists
some notations we used. Vault is used by two types of users:
ownersof bindings andquerierswho look up bindings stored
in Vault. This distinction is important to enforce security
and accountability in our system and to facilitate namespace
and other policy management. Before an owner can insert a
binding into Vault, we require it to register with the system.
The registration process serves several purposes: 1) to assign
the user a unique user id,idu, in the id space, and thereby
also a (logical)home column, i.e., root(idu); 2) to establish
an initial binding betweenidu and certain user credentials
such as user name, password, organization etc., and store such
binding at the user’s home column; and 3) to provide a natural
interface with the namespace and other policy management
systems (which are outside of Vault).

Once an owneru has obtained anidu and stored its
credentialcredu at its home column, it can insert, and sub-
sequently update or delete, bindings into Vault. To enable
namespace management and policy enforcement, we require
that binding insert operation always go through a user’s home
column, which checks the user’s credentials and interacts
with appropriate namespace management systems to ensure
that the user has the right to insert the requested binding.
To insert a new bindingB of key-value, (k, v), the user
u with idu and credu generates an insert requestmI =
IBEE

idu
(idu, credu, B, sk, nu). The user sendsmI to Vault

with idu as the target. Upon receiving the request, the home
column (root(idu)) processes it using Alg. 1 and forwards the
request to the targetidk = H(k), whereH is a secure hash
function. The request is then processed atroot(idk) using
Alg. 2. Either a confirmation response containingnu or a
failure response encrypted using the secret symmetric keysk

provided by the user is returned. Fig. 2(a) shows the steps
taken for a binding insert request.

Once a binding has been successfully inserted, subsequent
binding update or deletion can be carried out using two modes:
direct and indirect. In the direct mode, the user encrypts a
binding updateB′ = (k, v′) using the secret symmetric keysk

established with Vault earlier, and sends the encrypted update
request,mU = Esk

(B′, n′
u), to Vault with idk as the target.

Upon receivingmU , root(idk) looks up the symmetric key
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Fig. 2. Illustration of user operations

Algorithm 1 INSERT at Home Column:root(idu)

1: on receiving a binding insertion(idu, mI);
2: pkey := get key from cache(idu);
3: if (!pkey) then
4: pkey := get key from pillar(idu);
5: end if
6: (idu, credu, B, sk, nu) := IBED

pkey(mI);
7: if credu matches user credentialthen
8: consult namespace management policy to verify the ownership of B;
9: if verification = SUCCESSthen

10: idk := H[B.k];
11: mI := IBEE

idk
(idu, B, sk, nu);

12: sigroot(idu ) := gen signature(mI );
13: send(idk, mI , sigroot(idu )) to root(idk);
14: end if
15: end if

Algorithm 2 INSERT at Column:root(idk)

1: on receiving a binding insertion(idk, mI , sigroot(idu ));
2: verify sigroot(idu );
3: pkey := get key from cache(idk);
4: if (!pkey) then
5: pkey := get key from pillar(idk);
6: end if
7: (idu, B, sk, nu) := IBED

pkey(mI);
8: if B.k exists in the binding tablethen
9: returnrI := Esk

(BINDING COLLISION, nu);
10: end if
11: Storeidk, idu , B, sk ;
12: Set timer forsk;
13: returnrI := Esk

(INSERT SUCCESS, nu);

usingidk, and decryptsmU , and updates the binding. Indirect
update mode is used if the symmetric keysk is expired and
works in a similar manner as the binding insert operation:
the request is sent toidu first before being forwarded toidk.
Fig. 2(b) shows the steps for binding update in the direct
and the indirect modes. The binding delete operation works
in exactly the same way as the binding update operation,
except that the binding is deleted byroot(idk). Since no IBE
operation is invoked, update and delete in the direct mode is
far more efficient, thus it is particularly suitable in a dynamic
environment where frequent updates are required.

Queriersare in generalnot required to register with Vault.
In other words, any user is allowed to query Vault for bindings.
To query a bindingB with a binding keyk, a querier sends
a query request containingk, a secret symmetric keysk, and
a random noncenu encrypted withidk to Vault with idk as

the target id. Whenroot(idk) receives the request, it decrypts
the request (upon obtaining a private key from the pillar) and
checks if it has a bindingB with a keyk stored. IfB exists,
root(idk) encryptsB andnu usingsk and sends the reply back
to the user. If not, a failure message is generated by encrypting
a BINDING NOT FOUND response andnu with sk. Fig. 2(c)
shows the steps in the binding query operations. Because
IBE operations are computationally expensive, as a general
design principle, we only use IBE for thefirst time id-based
communication; symmetric encryption is always used for the
reverseor subsequentcommunications by including a secret
symmetric key in the first-time forward IBE channel. The use
of secret symmetric keys prevents attackers from returningany
bogus messages and the (random) nonces included in user
requests allows the user to distinguish between messages and
to defer replay attacks.

B. Internal Operations

We now describe the internal operations of Vault to ensure
the security of the system. Since Vault is an infrastructure
service, only authorized nodes (columns) which have pre-
assigned id’s can join Vault. A column with a pre-assigned
id is also given the private key corresponding to its id, which
is used to generate a signature for identity authenticationand
to sign its messages using anidentity-based signature(IBS)
scheme [8]. Using IBS, other columns in Vault can verify the
authenticity of its id before allowing it to join Vault. For a
column to join Vault, we assume it knows at least one existing
column currently active in Vault for bootstrapping purpose.

Having a pre-assigned id and proving its authenticity, how-
ever, is not sufficient in warranting a column to retrieve private
keys from pillars. A key design challenge in Vault is to
ensure that a column must be able to prove to a pillar that
it is currently activein Vault, and is indeedresponsible for
the id space rangeit claims. To address this challenge, we
devise an innovative mechanism –secure bond– to enable
neighboring columns to securely bond to each other and lock
in the portion of the id space each owns. This secure bond
between neighboring columns is created by usingtwo-way
hash chainsconsisting of two secure hash chains, one in each
direction. Recall that a hash chain is a crypto-primitive in
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Fig. 3. Secure Bond using two-way hash chains.

which a root valuer0 can be used to derive all later valuesri

for i > 0 by repeatedly applyingH (e.g., SHA) tor0. A value
ri in the chain can be used to derive all later valuesrj for
j > i, i.e., rj = Hj−i[ri] wherej − i is the number of times
we applyH to ri in order to obtainrj . However,ri cannot be
used to generate earlier values in the chain since invertingthe
secure hash function is computationally infeasible. We refer
to j as the (absolute) jump ofrj (from r0) and the valuej− i

the relative jumpfrom ri to rj . Givenri, rj for j > i and the
relative jumpj − i between them, we can use one value to
verify the other by computingrtemp = Hj−i[ri] and compare
rtemp with rj .

We now show how we use the two-way hash chains to
construct the secure bond between neighboring columns. To
better illustrate this concept, we give an example using three
columnsi, j, andk located in the same zone such thati is j’s
predecessor, andk is j’s successor. We assume each zone has
a fixed total jumpJT that is proportional to the logarithmic of
the size of the id space each zone has4. As shown in Fig. 3,
the pillar issues root valuesF0 = H [F ∗] and R0 = H [R∗]
to two columns at two ends of its zone, whereF ∗ and R∗

are two secret values known only to the pillar. These two
columns then pass some secret information derived fromF0

and R0 in the forward and the reverse direction5, and create
two hash chains in the zone, theF -chain (forward) and the
R-chain (reverse), respectively. We first establish theF -chain
before we establishR-chain. When a columnj receives a
forward zone secret (ζF

j ) from its predecessor (columni), it
computes a relative jumpIF

j→k to its successork. Columnj

then generates a newζF
k usingIF

j→k, and passes it securely to
the successork. This process is then repeated at the successor,
and so on. Once theF -chain is established, we pass reverse
zone secretsζR from successors to predecessors using the
relative jumpIR(=IF , the forward relative jump) to establish
the R-chain. Alg. 3 gives the details of the computation and
passing of forward and reverse zone secrets from columnj to
its successork and its predecessori, respectively. The forward
zone secretζF

j of the columnj contains a tuple(Fj , I
F
i→j , J

F
j )

where Fj = HIF
i→j [Fi], IF

i→j is the relative jump chosen
by i to its successorj, and JF

j is the absolute jump ofj

4Hence the hash chain can be computed in polynomial time inn, the
number of bits of the id space.

5forward means counterclockwise andreversemeans clockwise, we use
superscriptF andR to denote these two directions

in the forward direction. We have thatFj = HJF
j [F0] =

HJF
j +1[F ∗]. Similarly, j’s reverse zone secretζR

j contains a
tuple (Rj , I

R
k→j , J

R
j ), whereJR

j = JT −JF
j . We note that the

forward and reverse relative jumps between two neighboring
columns are the same in each direction, i.e.,IF

i→j = IR
j→i, and

the sum of all relative jumps equals toJT .

Algorithm 3 Secure Bond using Two-Way Hash Chains
1: //secure bond betweenj, its pred. i, and its succ.k;
2: ζF

j = (Fj , IF
i→j , JF

j );
3: ζR

j = (Rj , IR
k→j , JR

j );
4: //computeζF

k , ζR
i , line 5–13

5: IF
j→k := o(log(|idj − idk|)); //logarithmic jump with some scaling factor

6: IR
j→i := IF

i→j ;

7: Fk := H
IF
j→k [Fj];

8: Ri := H
IR
j→i [Rj ];

9: JF
k := JF

j + IF
j→k ;

10: JR
i := JR

j + IR
j→i;

11: sendζF
k := (Fk, IF

j→k, JF
k ) securely tok;

12: sendζR
i := (Ri, IR

j→i, JR
i ) securely toi;

13: storeIF
j→k ;

Given Fj , Rj , JF
j and the total jumpJT , we can pin

down the position of the columnj (relative to other columns)
in the zone. To see why this is the case, suppose that the
column j wants to move its position in the zone. Ifj wants
to move in the forward direction, it can do so by creating a
new valueF ′

j such thatF ′
j � Fj in the F -chain6. This means

columnj must increase its absolute jumpJF
j to a larger value

JF ′
j > JF

j so thatF ′
j = HJF ′

j +1[F ∗]. Since the total jump
in a zone is fixed atJT and JR

j = JT − JF
j , an increase

in JF
j means a corresponding decrease inJR

j . This requires
column j to obtain a smaller value ofR′

j ≺ Rj in order to
“move” successfully in the forward direction. However, this
is not possible due to the properties of the secure hash chain.
Similarly, j cannot move in the reverse direction as it cannot
obtain a smaller valueF ′

j ≺ Fj . Thus, each column’sF , R,
and J values enforce each other anduniquely determines a
column’s position (relative to other columns) in the zone. In
addition, a column cannot fake the position of its predecessors
and successors.

However, simply pinning down a column’s relative position
in the zone does not tell us the portion of the id space it owns.
We utilize j’s predecessori to obtain this information as each
column’s id space range is determined by its own id and its
predecessor’s id. To do so, the predecessor (columni) passes
a timed token Tj encrypted using pillar’s ididp to column
j. The token includes the following information:Fi, Ri, JF

i ,
idi, and a timestampts, i.e.,Tj = IBEE

idp
(Fi, Ri, J

F
i , idi, ts).

(The signature of columni is included as part of its id). The
token is periodically refreshed with a new timestampts. The
pillar can then use this information to authenticate and verify
a column before issuing private keys. The token is also re-
generated and passed to the new successor when a predecessor
has detected that an old successor has left the system and/or
a new successor has been established.

6Here b � a means thatb has a bigger (absolute) jump thana



When a columnj wants to retrieve a private key for some
idkey from the pillar, it sends a key request messagemR by
disclosing the following: the forward and reverse zone secrets
Fj andRj , the jumpJF

j andIF
i→j , and the timed tokenTj as

well as its id ownidj (with its signature) to the pillar securely.
Key request operations are carried out over secure channelsas
a user would do for binding operations (thus protecting the
operation against man-in-the-middle attacks): the columnj

encrypts the above information together with a symmetric key
and a nonce with the pillar ididp; the pillar returns the private
key and the nonce back using the symmetric key. As this
operation When the pillar receives the key request, it checks
the timestamp in the token to determine if the columnj is
active in Vault at the moment, and obtains its predecessor’sid.
Together with the columnj’s own id, the pillar can determine
the exact portion of the id space the columnj owns, and
determine whether the columnj is indeed responsible for the
requested key ididkey (see Alg. 4). (Note that the id’s of
both columnsi andj can be verified by the pillar using their
respective signatures.) Since the token from the columnj’s
predecessor is periodically refreshed, after the columnj has
left Vault after some time, it can no longer retrieve private
keys from the pillar.

Algorithm 4 Key Retrieval at Pillar
1: on receiving key requestidj , mR for idkey from j;
2: pkey := gen private key(idp); //can be stored for later use
3: (Fj , Rj , Tj , JF

j , IF
i→j) := IBED

pkey(mR);
4: (Fi, Ri, JF

i , idi, ts) := IBED
pkey(Tj);

5: if ts is still valid then

6: if Fi = H
JF

i
+1

[F∗] andRi = H
JT −JF

i
+1

[R∗] then

7: if Fj = H
IF
i→j [Fi] andRi = H

IF
i→j [Rj ] then

8: if idkey ∈ (idi, idj) then
9: pkeyj = gen private key(idkey);

10: returnpkeyj securely toj;
11: end if
12: end if
13: end if
14: end if

Once the initial two-way hash chains have been established,
F andR values for each column remain fixed and do not need
to be re-calculated regardless of column dynamics (join/leave).
When a new columnh joins the system between columns
j and k, it first requests a forward zone secrets from its
predecessorj. The columnj computes a new relative jump
IF
j→h(< IF

j→k), the correspondingζF
h , and the relative jump

IF
h→k from h to k for h. The columnh then computes a

new ζF
k for h’s successork based onIF

h→k. By maintaining
the relative jumpIF

j→k = IF
j→h + IF

h→k, the columnk’s
Fk value remains constant. On receivingζF

k , k computesζR
h

using the new relative jumpIR
k→h (=IF

h→k) and so on. When
a column leaves the system, its predecessor and successor
contact each other and calculate the relative jump between
them so that consistency is maintained. For example, ifj

leaves the network,h now becomes the direct successor of
i, and the relative jumpIF

i→h betweeni andh should be the
sum ofIF

i→j andIF
j→h.

Operations Overhead
symmetric encrypt 41 µs
symmetric decrypt 26 µs

IBE key gen 22 ms
IBE encrypt 32 ms
IBE decrypt 25 ms

TABLE II

COMPUTATIONAL OVERHEAD FOR CRYPTO-PRIMITIVES.

C. Further Enhancements

We briefly discuss several enhancements to Vault that can
further improve Vault’s performance and offer additional se-
curity. Vault inherits its scalability and robustness fromDHT.
However, as we will demonstrate in Section IV, due to the
computational overhead of IBE and relatively large network
latency, the overall performance of Vault needs to be improved,
in particular, to handle sudden surges in request loads suchas
“flash crowds”. We address the latency issue by introducing
the concept oflocal (Vault) proxiesand query delegation. A
local proxy is a (trusted) column in Vault is located in close
proximity to a user (or a group of users) that can perform
query requests on behalf of users and cache returned bindings
(similar to that of the local DNS), thereby considerably
reducing the network latency for subsequent queries on the
cached bindings. We usebinding delegationto handle flash
crowds. Binding delegation enables a column (say,root(idk))
to replicate a binding it owns to a subset of columns it chooses.
It also delegates certain private keys derived from the private
key for the binding to these columns so that they can answer
queries on behalf ofroot(idk). The binding replication and
delegation can be done either in a pre-arranged fashion or on
demand. Note that binding delegation allows multiple columns
to answer queries for the same binding, thereby avoiding the
single point of failure. Finally, although Vault may still be
vulnerable to compromise (say, by insiders or due to other
vulnerabilities outside the design and control of our system),
given the built-in accountability and security in Vault, such
attacks can plausibly be detected more easily with additional
monitoring and defense capabilities for identifying inconsis-
tency, misuses, and anomalies. Due to the space limitation,
we refer interested readers to a technical report version ofthis
paper [11] for more details on enhancements.

IV. EXPERIMENTAL EVALUATION

In this section we present evaluation results from a prototype
implementation of Vault that has been deployed and tested on
the PlanetLab as well as in our local network.

A. Local Experiments

We start with the experimental results we have obtained
in a local testbed located in a local area network. These
experiments allow us to evaluate the computational overheads
of Vault operations, and how they are affected by the number
of nodes (pillars and columns) as well as user request loads,
while without accounting for the potential impact of (wide-
area) network latency.
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Fig. 4. System Response Time in Local Experiments

User Column Pillar
Insert 33 ms 57 ms 73 ms

(Direct) Update/Delete 37 µs 60 µs N/A
Query 33 ms 25 ms N/A

TABLE III

COMPUTATIONAL OVERHEAD FORBINDING OPERATIONS.

We first measure the computational overhead of IBE crypto-
primitives (as implemented in the Boneh-Franklin IBE library)
and compare them with the symmetric crypto-primitives (using
AES). We use the Time Stamp Counter (TSC) on a Pentium 4
2.4GHz Processor to count the number of clock cycles taken
by each crypto-primitive and divide it by the CPU frequency
to measure the computational overhead. The input to each
primitive is similar to what is used in Vault operations. For
example, we use 160-bit ids as inputs to measure the overhead
of IBE private key generation. Table II shows the overhead of
each crypto-primitive as the average of 30 runs. It is clear that
IBE is far more expensive than the symmetric cryptosystem.

Next we measure the computational overhead of Vault op-
erations. For this we use a simple set-up with three machines,
one as pillar, one as column and one as an end host. For
binding insertion, we use the user ididu as the binding key
(i.e., idk = idu). We also allow the column to cache the
private key of the id once is retrieved from the pillar. Hence
for binding update and delete in the direct mode, no IBE
primitives are performed. Table III shows the computational
overheads of each Vault operation as measured at user, column
and pillar side. The results are obtained as the average of 30
runs for each operations. We omit the results for update/delete
in indirect mode as they are similar to that of binding insert
operations. The results show that the computational overhead
for each binding operation depends largely on the number
of IBE operations each entity needs to perform. The use
of symmetric crypto-mechanism for binding update in direct
mode significantly improves its performance.

We now illustrate how the number of pillars influence
the performance of Vault operations. We use four machines
as columns and vary the number of pillars from one to
four. A number of other hosts are used to generate random
binding insert requests at various rates. We measure the system
response time, defined as the lapse from the time immediately
after a user sends out a binding insert request to the time

a reply from Vault is received. Fig. 4(a) shows the average
system response (measured over a 15-minute duration) as a
function of binding insert request rate when different number
of pillars is used. The results show that as we increase the
number of pillars, we improve the response time of Vault in
handling binding insert requests. To better demonstrate this
point, Fig. 4(b) shows the distribution for the pillar response
time – the time immediately after a column sends out a key
retrieve request until the time the private key is returned –at a
request rate of 30 inserts/second. Similar patterns for thepillar
response time distribution are observed for all other request
rates. As we can see, by adding more pillars to the system
we can reduce the overall load imposed on each pillar, thus
yielding faster overall system response time.

To investigate the impact of the number of columns on the
overall system performance, we use a setup with one pillar but
vary the number of columns from 5 to 8 machines. We use the
performance of query operation as a representative exampleto
illustrate the results. To evaluate the query performance,we
first insert 5000 random bindings to the system and generate
queries for these bindings uniformly at different rates. Fig. 4(c)
shows the result of query rate versus the (average) system
response time (again over a 15-minute period), with 1 pillar
and varying number of columns. Using only 5 columns, the
average system response time starts to increase significantly
once the query rate reaches 80 query/second. With 7 or 8
columns and only one pillar, the system can handle up to
120 query/second before we start seeing some increase in
the average system response time. Furthermore, the average
system response at 200 query/second is lower than that of
5 columns and 1 pillar at half the query rate, namely, 100
query/second. Similar observations hold for direct update
and delete operations with results showing around 500 times
improvement due to the use of symmetric crypto-mechanism.

Lastly we evaluate how binding delegation (see Section III-
C) can improve the system performance, especially under
“flash crowds” – when most users query for the same binding.
For this experiment, we first set up a system with 1 pillar and 8
columns, with each of them serving some background queries
at 5 query/second per column. We emulate the flash crowd
effect by generating queries that target a specific binding
at high rates. Without binding delegation, all these queries



must be handled by one column. We see that at the rate of
35 query/second for the target binding, the average system
response time quickly jumps beyond 500 ms. By replicating
the binding to 7 other columns and thus serving queries for
this binding at 8 columns instead of one, the system response
time reduces to around 100 ms even if we increase the query
rate for the target binding to 100 query/second. (Due to space
limitation, we do not present the detailed plots here.) We see
that binding delegation is an effective way to improve the
overall system performance, in particular, under flash crowds.

From our local experiments, we show that without consid-
ering the potential impact of (wide-area) network latency,the
computational overheads of Vault operations are dominated
by IBE crypto-primitives, the price we pay for added security.
However, by using “IBE-only-once” principle, we can employ
symmetric encryption mechanisms for binding update/delete
operations to significantly increase their performance. Further-
more, we can scale the system performance by increasing the
number of columns and pillars. In addition, binding delega-
tion can further improve the overall system performance, in
particular, under flash crowds.

B. PlanetLab Experiments

Here we present the evaluation results from the PlanetLab
deployment. We deploy Vault using from around 80 to 100
nodes on the PlanetLab as columns and pillars, and an
additional number of nodes are also used as users of Vault
to generate binding insert, update, delete and query requests.
These nodes are geographically dispersed on the Internet.

Since PlanetLab nodes used in our experiments have vary-
ing processing powers and are heavily loaded with many
experiments running concurrently at any given time, we first
measure the time it takes for these PlanetLab nodes to execute
IBE crypto-primitives. The measurement is done similar to
our local testing by measuring CPU clock cycles. Table IV
shows the results for several PlanetLab nodes with different
CPU speeds, where each value is the average of three nodes
at the same CPU speed at different time of the day for a
total of 500 measurements. The standard deviation is given
in the parentheses. Comparing with Table II, we see that the
PlanetLab nodes perform much worse than local machines.
In addition, faster machines does not necessarily give us
better performance. The relatively large standard deviation also
reflects the time variability in executing the crypto-primitives
due to fluctuating CPU loads on the machines.

We now present some experimental results regarding the
overall performance of Vault on PlanetLab. For these exper-
iments, 75 PlanetLab nodes are used as columns and the
number of pillars are varied from 4, 8, to 12. Additional
PlanetLab nodes are used to emulate a large number of users
of Vault to generate binding insert/update and query requests.
For each experiment, a different request rate is generated by
users from a certain distribution of binding keys. Before each
set of experiments, we stop and restart Vault and allow a 15-
minute initialization and stabilization period to establish zone
secrets and ensure the system is stable and operates correctly.

mean (std)
CPU IBE key gen IBE encrypt IBE decrypt

(GHz) (ms) (ms) (ms)
1.8 57 (27) 83 (35) 58 (16)
2.4 188 (139) 241 (94) 202 (118)
2.8 102 (38) 133 (31) 106 (35)
3.0 125 (98) 155 (73) 127 (56)
3.06 118 (103) 155 (64) 114 (41)

TABLE IV

COMPUTATIONAL OVERHEAD IN PLANETLAB MACHINES

System - operation Mean (ms) 95th%
Vault - Insert 725 733

Dummy V. - Insert 601 617
Vault - Query 494 497

Dummy V. - Query 346 347

TABLE V

SYSTEM RESPONSET IME FOR VAULT AND DUMMY VAULT.

Each experiment then lasts about 45 minutes. Similar to the
local testing, we measure the overall system performance from
the users’ perspective: the system response time is measured as
lapse from the time immediately after a user request generated
to the time a reply is received.

As a representative example, Fig. 5(a) shows the cumulative
distribution function (CDF) of the system response time for
binding insert operations that are generated uniformly at arate
of 15 insertion/second by users. We see that the median system
response time (50% percentile) reduces from just below 0.8
seconds to 0.6 seconds when the number of pillars is increased
from 4 to 8. However, there is almost no difference when the
number of pillars is further increased from 8 to 12, suggesting
the pillars are not the performance bottleneck. Fig. 5(b) shows
the CDF of the system response time for query operations
using the experimental setting of 75 columns and 8 pillars. The
query requests (the binding keys) are generated from either
a uniform or a Zipf distribution withα = 0.91 (this value
is chosen to to mimic typical DNS loads [7], [12]). From
the figure we see that there is virtually no difference in the
performance under these two distributions. In all cases, around
80% of queries are answered within 0.6 seconds and the mean
query response time is around 500 ms. We have also conducted
experiments using different user request rates and different
number of columns (from 75 to 100). Due to space limitation,
we do not present the results. The general observations are
that under modest user request rates, increasing the numberof
pillars and columns improves the overall system performance
initially; however after a certain threshold, further increasing
the number of pillars or columns does not yield any significant
performance improvement. Comparing these results with those
of the local testing, it leads us to suspect that the wide-
area network latency becomes a more dominant factor in
determining the overall system performance.

To investigate the wide-area network latency, in particular,
Chord message routing latency, we implement a “stripped
down” version of Vault – referred as theDummy Vault–
which mimics the message routing pattern of Vault but does
not execute any binding and key retrieval operations. Hence
the system response time of Dummy Vault includes mostly the
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Fig. 5. System Response Time on the PlanetLab

wide-area network latency in routing messages. To accurately
measure the network latency, we run Vault and Dummy Vault
at the same time and send back-to-back binding requests to
both systems. Fig. 5(c) and Table V compare the system
response times of Vault and Dummy Vault (Dummy V. in
Table V) for binding insert and query operations, where both
systems contain 8 pillars and 75 columns. We see that Chord
message routing latency indeed contributes a predominant
portion (in general over 70%) of the overall system response
time. Similar results also hold under other system settings.

Since the wide-area network latency (in particular, Chord
routing latency) plays a dominant role in the overall system
response, in the final set of experiments we investigate the
performance benefits of query delegation via alocal Vault
proxy. For this, we use a PlanetLab node located on our
campus network as the local Vault proxy. We set up several
machines in our lab to emulate users and generate binding
queries and measure the system response time for each request.
With query delegation, queries are encrypted with the id of the
local proxy instead ofidk for a given binding key,k. Local
proxy would forward queries to Vault on behalf of users if
they cannot be found in its local binding cache, otherwise
it would reply with the cached bindings. Once a user has
contacted the local proxy for the first time, a secret symmetric
key can be used for subsequent query requests with no IBE
operations. Our experimental results show that for bindings
that are not found in the local cache, the system response time
ranges from 800 ms to 1.2 seconds. For subsequent queries
from new users (i.e., those that contact the local proxy for
the first time) on the cached bindings, the average system
response time is reduced to around 220 ms, with more than
a four-fold reduction. The dominant factor in the response
time here is the time for performing the IBE decryption at
the local proxy. Furthermore, for queries on cached bindings
from previous users (thus a secure symmetric channel has been
established with the local proxy), the system response is only
around 5 ms. This drastic improvement in performance is due
to the much faster symmetric cyrpto-mechanisms. Note that
because the local PlanetLab node that serves as our local
proxy is fairly heavily loaded, crypto operations take much
longer than the results we obtained in our local experiments
(cf. Table II). Overall our results show that similar to DNS,
we can significantly reduce the overall system response time

by query delegation and caching.

V. CONCLUSION

In this paper we have developed a novel approach in build-
ing a genericsecure binding system as a (trusted) infrastruc-
ture service by combining IBE and DHT. In building such a
system – referred to as Vault, we have also developed several
innovative mechanisms to address various important design
and implementation issues. A prototype implementation of the
system has been deployed and evaluated on the PlanetLab as
well as in a local testbed. We believe our approach explores a
new dimension in constructing generic secure binding systems
and our system can be used as a fundamental building block
to facilitate the development of next generation networks and
network applications.
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