
VEIL: A “Plug-&-Play” Virtual (Ethernet) Id Layer for Below IP Networking

Sourabh Jain, Yingying Chen, Zhi-Li Zhang, Saurabh Jain
{sourj, yingying, zhzhang, saurabh}@cs.umn.edu

University of Minnesota-Twin Cities

Abstract—This paper proposes VEIL—a novel, “plug-&-play”
Virtual (Ethernet) Identifier (Id) Layer for below IP networking.
The objective is two-fold: i) VEIL directly addresses the scala-
bility, efficiency and reliability challenges facing the traditional
Ethernet, while retaining its “plug-&-play” feature; ii) but
perhaps more importantly, VEIL provides a uniform (below IP)
convergence layer to support a large, dynamic and heterogeneous
(layer-2) network that is capable of connecting hundreds of
thousands or more diverse physical devices. The key idea in
our design is to introduce a topology-aware, structured virtual id
(vid) space onto which both physical identifiers as well as higher
layer addresses/names are mapped. VEIL completely eliminates
network-wide flooding in both the data and control planes, and
thus is highly scalable and robust.

I. INTRODUCTION

The explosive growth of the Internet has enabled a wide
range of diverse devices to be interconnected and communicate
with each other through a variety of disparate technologies.
While serving as the universal “glue” that pieces together
various heterogeneous physical networks, the Internet Protocol
(IP) suffers certain well-known shortcomings, e.g., in terms
of need for careful and extensive network configurations,
relatively poor support for mobility, and so forth. In contrast,
layer-2 technologies such as Ethernet are largely “plug-&-
play” in that hosts are equipped with persistent MAC ad-
dresses, and Ethernet switches automatically learn about host
addresses and location, adapt to changes in network topology
as well as host mobility, perform packet forwarding seamlessly
with minimal operator configuration and intervention. Because
of this simple “plug-&-play” semantics, today’s switched Eth-
ernet technology (where the collision domain is no longer
a size-limiting factor) has been rapidly expanded to large,
dynamic networks, such as large data centers and Metro
Ethernet, with up to tens of thousands switches and millions
of hosts.

On the other hand, the unprecedented scale as well as the
demanding efficiency and robustness requirements of these
new large, dynamic (layer-2) networks also pose revolutionary
challenges on the Ethernet technology that was originally
developed for small, local area networks. For instance, the
network-wide flooding–often resorted by Ethernet switches to
locate end hosts and forward packets whose locations are
yet to be learned–not only significantly reduce the network
capacity. The spanning tree algorithm used to avoid forwarding
loops not only results in sub-optimal forwarding paths, but
also is slow to adapt to changes in the network topology.
To address these challenges, several solutions [7], [11]–[14]
have been proposed, of which SEATTLE [7] is closely in
spirit to our work, in that both utilize DHT (distributed hash

table) techniques for scalable and efficient address look-up
and resolution. However, SEATTLE employs the OSPF-style
shortest routing in layer 2. It therefore not only requires
network-wide flooding in the control plane for building routing
tables, but also suffers the same scalability and robustness
limitations plaguing shortest-path routing. (We refer the reader
to Sec.II for further discussion of these and other related
works.)

In this paper we propose VEIL—a novel, “plug-&-play” Vir-
tual (Ethernet) Identifier (Id) Layer for below IP networking.
The objective is two-fold: i) like SEATTLE, VEIL directly
addresses the challenges facing the traditional Ethernet, while
retaining its “plug-&-play” feature; ii) but perhaps more
importantly, VEIL provides a uniform convergence layer (or
“logical link layer” using the ISO OSI parlance) to support
a large, dynamic and heterogeneous (layer-2) network that is
capable of connecting hundreds of thousands or more diverse
physical devices–not only Ethernet-equipped devices, but also
non-Ethernet devices such as 802.16-based sensors, blue-tooth
devices–in a scalable and robust fashion. The proposed VEIL
architecture is a shim layer that operates under the (traditional)
network layer (e.g., IPv4/IPv6) and above the (“native”) link
layer/physical layer such as Ethernet, 802.11 Wireless LANs,
etc. The key idea in our design is to introduce a topology-
aware, structured virtual id (vid) space onto which both phys-
ical identifiers (e.g., Ethernet MAC addresses), pid’s in short,
as well as higher layer addresses/names (e.g., IPv4/IPv6 ad-
dresses) are mapped. Using such a topology-aware, structured
vid space as the basis for efficient and scalable (DHT-style)
object look-up/address resolution, routing and forwarding,
VEIL completely eliminates network-wide flooding in both the
data and control planes. As a result, VEIL is highly scalable
and robust while at the same time offers better support for
multi-homing and mobility. In Sec. II we provide an overview
of the proposed VEIL architecture, and in Sec. III we describe
the key mechanisms of VEIL. Initial evaluation results are
presented in Sec. IV, and the paper is concluded in Sec. V.

II. OVERVIEW AND RELATED WORK

A. Overview of VEIL

The proposed VEIL architecture is a shim layer that operates
under the (traditional) network layer (e.g., IPv4/IPv6) and
above the (“native”) link layer/physical layer such as Ethernet,
802.11 Wireless LANs, etc. For simplicity of exposition, here
we assume that each physical device has a 48-bit Ethernet
MAC address, although this is not necessary. In fact, as will
be clear later, the proposed VEIL architecture allows heteroge-
neous physical end devices with other types of MAC addresses

2

(e.g., smart phones with “hard-coded” phone numbers, blue-
tooth devices, 802.16-based sensors, etc.) to be plugged into
the same layer-2 network. In lieu of Ethernet switches or
wireless access points (APs), we have VEIL switches to which
end devices (either through wired or wireless channels) are
connected: they “speak” the native MAC/physical protocols
to deliver data to/from these connected physical end devices;
among themselves, they communicate using the VEIL protocol
and perform VEIL operations such as vid assignment, map-
ping, routing (see below) to provide scalable and robust end-
to-end connectivity and data delivery within a VEIL network.

The key idea in our design is to introduce a topology-aware,
structured virtual id (vid) space onto which both physical iden-
tifiers (e.g., Ethernet MAC addresses), pid’s in short, as well
as higher layer addresses/names (e.g., IPv4/IPv6 addresses)
are mapped (see Fig. 1a). By topology-aware, we mean that
the physical network topology (formed by the connections
among VEIL switches) is embedded into a structured space
(e.g., a Kademlia-like virtual tree [9], a hypercube, a d-
dimensional Euclidean space) in such a manner that physical
proximity among VEIL switches are approximately preserved.
More precisely, VEIL switches are assigned vid’s in a manner
such that if they are logically close in the vid space (based on
a logical distance function, e.g., longest prefix, Hamming or
Euclidean distance) are also physically close (e.g., in terms of
hop counts) to each other. Using a (binary) Kademlia virtual
tree as an example, Fig. 1b shows such an embedding: the
leaf nodes correspond to VEIL switches (not physical devices
connecting to them!), the vid of a VEIL switch is the binary
strings along the path from the root to the corresponding
leaf node. (We note here that the tree is virtual in the sense
that any intermediate node (or the root) in the tree does not
correspond to any physical switch/device, but the collection of
switches/devices share the same prefix1.) The logical distance
between a pair of vids in this vid space is defined as the
difference of number of bits used to represent a vid and
the length of the longest common prefix for the pair. Hence
it is clear that all VEIL switches within the same sub-tree
(thus with logically closer vid’s) are also physically closer. In
Sec. III we will briefly discuss how the vid assignment can be
performed in either a centralized or distributed fashion. End
devices connecting to a VEIL switch inherit an extended vid
consisting of the (32-bit) vid of the switch plus a (randomly
assigned) 16-bit local vid (see Sec. III for detail).

Throughout the paper, we will use a binary Kademlia
(virtual) tree to illustrate how the proposed VEIL works. (More
generally, a K-ary tree may be used.) Taking advantage of
this topology-aware, structured vid space, VEIL switches run
a vid routing protocol (referred to as VIRO) to collaboratively

1As such, it does not make sense to talk about the failure of an intermediate
node! Hence unlike a physical tree (e.g., as used in Ethernet spanning tree),
failure of any VEIL switch only affects a leaf node in the (virtual) tree.
Namely, there is no single (intermediate) point of failure.

build routing tables, maintain network-wide connectivity2, and
perform end-to-end data delivery across a VEIL network. In
VIRO, routing tables are constructed piece-meal based on the
vid logical distance instead of physical distance (e.g., hop
counts), and packets from a source VEIL switch are forwarded
towards their destination along a logical path with decreasing
logical distance (to the vid of the destination VEIL switch).
In Sec. III we briefly outline the basic operations of VIRO,
and describe how packets are forwarded by VEIL switches
using VIRO. The detailed description of VIRO and proof of
its correctness can be found in [6] (see also [8] for an outline
of VIRO in the context of a mobility architecture).

While at the expense of incurring additional routing
stretches–albeit fairly small in general thanks to the topology-
aware construction of the vid space (see Sec. IV)–when com-
pared to the shortest path (using the physical distance) rout-
ing, the logical distance-based VIRO routing affords several
important advantages. i) Scalability. By taking the structured
vid space and constructing routing tables in a piecemeal,
bottom-up fashion, VIRO completely eliminates network-wide
flooding in both the data plane (unlike Ethernet switching
algorithm) and control plane (unlike OSPF and other shortest
path routing algorithms). Furthermore, because of the natural
hierarchical structure of the vid space, routing information
regarding far-away part of the network is automatically ag-
gregated using the vid prefixes. As a result, the routing table
size is in the order of O(log N), where N is the number of
VEIL switches in the network, as opposed to O(N) (as in
the case of OSPF). ii) Robustness. Unlike OSPF, no network-
wide full topology needs to be maintained by any switch,
thanks to the structured vid space, and hence changes in
network topology do not need to be flooded globally. Due
to the aggregate routing information maintained by switches,
failure of a link or switch node can be localized, without
affecting nodes in far-away parts of the network. Furthermore,
path and topology diversity can be easily exploited in VIRO
by using multiple forwarders; hence failure of one forwarder
does not affect network-wide reachability. iii) Multi-Homing
and Mobility. VIRO also provides seamless and better support
for multi-homing and mobility. It allows an end device to be
connected with multiple VEIL switches without causing loops
and other complexities; mobility of an end device can be easily
supported through scalable and efficient pid (or higher layer
names/addresses) to vid mapping and lookup.

B. Related Work

There are several proposals, e.g., RBriges [12], CMU-
Ethernet [11], Viking [14], SmartBrigdes [13], that attempt
to address the scalability limitations in scaling Ethernet to
large, dynamic networks (see Sec. 1.1 of [7] for more detailed
discussion on these proposals). Our work is closely related

2Unlike the peer-to-peer (P2P) Kademlia routing protocol which operates
on top of the IP network layer and thus the end-to-end connectivity is assumed
(and maintained by the underlying network layer), VIRO has to build network-
wide connectivity in a “bottom-up” manner based on the (native) link layer
connections.

3

!"

#"

$" %"

&"
'"

("

Virtual ID Layer

IPv4/IPv6

Layer 2 Physical Network Topology
!" # $"%"&" '" ("

Layer 2 connectivity

!

"

#
$

%

&'

(

!

"

#
$

%

&'

(

)'

)'

)'

*'

*' *'

!

"

#
$

%

&'

(

))'

*)' **'

)*'
))'

**'

*)'

!

"

#
$

%

&'

(

*))'

)' *'

)'
)))'

)**'

)*)'

(a) Overview of VEIL (b) VEIL based topology (c) Construction of VEIL

Fig. 1. Design of Virtual (Ethernet) ID Layer

to SEATTLE [7], with similar goals but two key differences.
As pointed out earlier, while SEATTLE eliminates data plane
flooding, it employs OSPF-like shortest path routing, which
requires network-wide flooding of link state advertisements
(LSAs) in maintaining network topology and tracking its
changes. SEATTLE thus suffers the same limitations plaguing
OSPF-based IP routing. For example, Node and link failures
therefore require network-wide flooding of LSAs and re-
computation of routing tables at all nodes. For scalability,
hierarchical, area-based routing must be introduced, which in
turn introduces additional management complexity as well as
routing stretch penalty. In contrast, with the introduction of
vid’s and a structured vid space, VEIL can support a large,
dynamic (below IP) network with heterogeneous devices, not
simply Ethernet-enabled devices, in a more self-organizing
and scalable fashion (e.g., with O(log N) routing table sizes
instead of O(N)).

Our work is also substantially different from the identifier-
based routing schemes such as VRR [3], UIP [5] and
ROFL [4], which advocates a flat universal id space to replace
the current global IP address space. These schemes employ a
DHT-style randomly and consistently hashed id assignment–
which produces a id-space completely independent of the
underlying network topology–and perform routing based on
logical distance to the id of the destination, incurring a stretch
penalty (which is unbounded in the worst case). In addition,
link and node failures and dynamics (joining, leaving or mov-
ing around in the network) often induce a network-wide effect,
as two logically close nodes may be far away in the underlying
physical network In contrast, VEIL introduces a topology-
aware, structured vid space, and as a result, the VIRO routing
protocol incurs fairly small and provably bounded routing
stretches, and effectively localizes the effect of failures. Lastly,
in an earlier work of ours [8], we proposed the use of the vid
space as the basis for a new mobility architecture–where each
end device is assigned a fixed flat universal id (uid) and a
dynamic vid that depends on its current location in the network
for routing purpose–to provide efficient, scalable and flexible
support of end-host mobility.

III. THE VEIL LAYER

In this section we outline the key mechanisms of VEIL: vid
assignment, the VIRO routing protocol, vid lookup/address

resolution, and end-to-end packet forwarding. We will use the
notation v(x) or vx to denote the virtual id of a host x (or
VEIL switch), and hashk(val) represents a k-bit hash value
for val using a consistent hash function. We will refer to end-
host devices attached to switches as hosts, and the terms node
and switch are used interchangeably to denote a VEIL switch.

A. VEIL Id Assignment

Fig. 2. vid field structure.

To be backward compatible with Ethernet MAC addresses,
VEIL assigns a 48-bit long vids (VEIL Id) to each switch/host
in a VEIL network. As shown in Fig. 2, a vid comprises
of two parts: The first part, the switch-vid field, is a 32-bit
identifier that uniquely identifies a VEIL switch in the network.
The second part, the host-id field, is a 16-bit identifier that
uniquely identifies a host attached (through either a wired or
wireless link) to a VEIL switch. We refer to the switch that
a host is currently attached to as the host-switch of the host.
The vid of each host is assigned as follows: the first field
is set to be the same switch-vid as its host-switch, and the
second field is randomly assigned, e.g., by using a 16-bit hash
of its MAC address (pid), host-vid := hash16(pid), and is
locally unique with respect to the host switch. For a switch,
its host-vid part of its vid is assigned in a similar fashion.
In the following we will discuss how the switch-vid part of
a switch vid is assigned. For conciseness, unless otherwise
stated, the term vid simply refers to the switch-vid part of
switch vid’s, as they are the ones that form a topology-aware,
structured vid space and are used for routing and forwarding.

In setting up a VEIL network (and before running the VEIL
vid assignment algorithm), a global parameter L (1 ≤ L ≤
32) is selected, which is the (maximum) height of a (binary)
Kademlia virtual tree of the vid space. By default, L is set to
24. The logical distance between two vids vx and vy is then
given by

δ(vx, vy) = L− lcp(vx, vy)

where lcp(vx, vy) is the length of the longest common prefix
between (the first L-bits of) vx and vy . Thus, the largest logical
distance between any two switches is 24. In addition, each leaf
node (i.e., a logical level-0 node) in the Kademlia virtual tree

4

corresponds to a collection of switch nodes with the same L-bit
prefix (i.e., of logical distance 0). Given this logical distance
function, the vid assignment must ensure the following two
properties: i) The closeness property: if two nodes are close
in the vid space, then they are also close in the physical
topology; in particular, if two nodes are logical neighbors (i.e.,
sharing the same L-bit prefix), they are directly connected. ii)
The connectivity property: any two adjacent logical sub-trees
(i.e., sharing a common prefix) must be physically connected,
i.e., there must be at least one physical (wired/wireless) link
connecting one node of each subtree.

We have designed two modes of vid assignment for boot-
strapping a VEIL network using either a distributed or cen-
tralized algorithm which guarantees these two properties. For
example, in the distributed mode, nodes run a bottom-up,
recursive clustering algorithm based on the proximity: they
first randomly generate (32 − L) bits as the lowest 32 − L
bits of their vid’s; they then exchange information with their
neighbors, and iteratively merge with their neighboring nodes
to form a larger super-node, and assign 0 or 1 to the next
bit in their vid’s (see [6] for details). An example of the
distributed vid assignment is schematically shown in Fig. 1(c).
Initially, all nodes are level-0 nodes. In the first round of the
vid assignment, nodes merge with their neighboring nodes
to form (level-1) super-nodes (DG, BE, AF, C) by assigning
a 1-bit (0 or 1) vid to distinguish themselves in the super-
node. In the second round, level-1 nodes are clustered, as
(DGBE, AFC), and additional 1-bit is prepended to their vid’s.
This process continues until all nodes are assigned a unique
L-bit vid’s. In the centralized mode, one node is picked as
the master node and collects the network topology. It then
runs a top-down graph partition algorithm and assigns vid’s
to nodes accordingly. Alternatively, a few (central) nodes may
be first selected and manually assigned a unique prefix, and
afterward a top-down clustering algorithm is used to expand
the prefixes and assign vid’s to all nodes. This method, for
example, is especially useful and efficient in data center or
other networks where the network topology has a natural
hierarchical structure.

After the network bootstrap process, when a new node is
added to the network, it simply talks to its direct neighbors to
learn their vid’s. It auto-assigns its own vid by setting the first
L bits to be the same as one of its neighbors, and generating
a unique bit-string for its remaining 32 − L bits3. Lastly, we
remark that the end host in fact does not need to know its vid
at all; as will be clear in Sec. III-C, the vid of an end host is
used only by its host switch to look up and translate between
its vid and pid (MAC address), thus not used by the end host
itself at all.

3Depending on the type of networks to be constructed, L can be judiciously
configured initially to account for future network expansions, and thus it
makes additional vid assignment possible. For instance, using the default
value L = 24, we allow 256 nodes residing with the same leaf node.

TABLE I
ROUTING TABLE OF NODE C

Bucket Prefix Nexthop Gateway
1 001 Nil Nil
2 01∗ A(011) C(000)
3 1 ∗ ∗ G(101) C(000)

B. Virtual Id Routing (VIRO) Protocol

We briefly outline the key ideas behind the VIRO routing
protocol (see [6] for detail). For each node x, we define its
level-k bucket, denoted by Bx

k , as the group of nodes which
are k logical distance away from x, and a level-k sub-tree,
denoted by Sk(x), as the set of all the nodes at logical distance
no more than k from x. Formally, we have

Bx
k = {y : δ(x, y) = k} and Sx

k = {y : δ(x, y) ≤ k}.
For k = 0, . . . , L − 1, we say a node pk ∈ Bx

k is a gateway
for a level-(k + 1), Bx

k+1, if ∃pk+1 ∈ Bx
k+1 ∧ ∃pk ∈ Sx

k ∧
(pk, pk+1) ∈ E, where E is the edge set for direct (physical)
connections among nodes. In VIRO, a node only needs to
maintain one routing entry to reach any node in bucket Bx

k ,
1 ≤ k ≤ L. For (directly connected) nodes in the level-0
bucket, Bx

0 , one entry per node is maintained. Each routing
entry contains the following fields: the bucket-level and its
corresponding prefix, a list of gateways, and a list of next-
hops for reaching the gateways. (A next-hop is a node directly
connected to node x.) Table I shows an example of the routing
table for node C in the network topology shown in Fig. 1.

The construction of the routing table uses a bottom up
round-by-round protocol, where after the kth round, each node
x has built a routing entry to reach nodes in its bucket Bx

k .
During round 0, each node x discovers its directly connected
neighbors, and all nodes in Bx

0 . During round k, 1 ≤ k < L, x
uses a publish/query based mechanism to i) either publish itself
as a gateway to Bx

k+1 if it has a direct connection to a node in
Bx

k+1, or ii) query to discover such a gateway so as to install
a routing entry for bucket Bx

k+1. Because of the closeness and
connectivity properties of the vid assignment, this process is
guaranteed to converge and generate the correct routing table.
The details of the routing algorithm and its correct proof can
be found in [6].

The forwarding process using VIRO is simple. In order
to forward a packet from switch s with vid vs to a desti-
nation d with vid vd, s first computes the logical distance
k = δ(vs, vd). If k > 0, s forwards the packet to a nexthop
corresponding to Bucket Bs

k in the routing table. If k = 0 and
vd is not a host directly connected to s, s forwards it to d’s
host switch, which then delivers to d. If vd is a host directly
connected to s, then s directly delivers it to d (see the next
subsection for how this is done).

C. Id Lookup/Address Resolution, and End-to-End Packet
Delivery

Like SEATTLE [7], we employ a one-hop DHT for id
lookup and address resolution. Recall that each host-switch
assigns vids to all the hosts connected to it. A host switch
discovers the MAC/IP addresses (denoted by pid and IP
respectively) of an end host that is directly connected to it by

5

VEIL

Switch

Sx

VEIL

Switch

Sy

VEIL

Switch

Sz

x
y

1. ARP Query

(IPy ! MAC?)

2. ARP Query

Forwarded as
Unicast request

(IPy ! MAC?)

3. ARP Reply

(IPy ! Vy)

4. Ethernet Packet

(MACx ! Vy)

5. Sx changes

source MAC address
Ethernet Packet

(Vx ! Vy)

6. Sy changes

destination
MAC address

Ethernet Packet

(Vx ! MACy)

!"##$%&'(")*+'"(',-'

./'011' 2$3(4"*'.5'

./6' 26'

7' 7'

89:"*;<9=('(")*+'"(',6'

!0>'011' 2$3(4"*'.5'

!0>6' 26'

7' 7'

Fig. 3. vid lookup and address resolution process.

listening to (or “snooping”) all traffic on the link4. It assigns a
vid to each host, and store the 〈pid, vid〉 mapping as well as
the 〈IP, vid〉 into a local cache. Furthermore, the host switch
periodically publishes the mapping 〈IP, vid〉 (as long as the
end host is still connected to it) to a specific switch, called
the access switch (of the said IP address), the switch-vid of
which is closest to the 32-bit hash, hash32(IP). The access
switch stores this 〈IP, vid〉 mapping into its cache, and is
responsible to answering queries for the said IP address from
other nodes.

Fig. 3 depicts the address resolution, id lookup and packet
delivery processes. When host x wants to send a packet to host
y with IP address IPy , it first sends an ARP query to resolve
IPy to MAC address of y (as in the standard IP operation).
This ARP packet is intercepted by the host-switch Sx. If host y
is not directly connected to Sx (otherwise, everything operates
as the usual Ethernet), the host switch Sx sends a unicast
request to the access switch Sz whose switch-vid is closest to
hash32(IPy). Upon receiving the request, Sz replies with the
corresponding 〈IP, vy〉 mapping. Sx caches this mapping in
its local cache for future packet forwarding, and sends an ARP
reply to x with vy as the MAC address. Host x encapsulates
the IP packet in an Ethernet packet with vy as the destination
MAC address. When switch Sx receives this packet, it replaces
the source MAC address (host x) by its vid, and forwards
the packet toward the host switch, Sy , of the destination host
y, using the VIRO packet forwarding described earlier. Upon
receiving the packet, the host switch Sy uses vy to look up
the actual MAC address of host y in its local cache, rewrite
the destination MAC address field, and forward the packet to
host y.

D. Support for Mobility and Legacy Protocols

Host mobility with a VEIL network can be easily supported
by updating the IP to vid (or MAC/ pid to vid) mappings.
The host-switches are responsible for updating these mappings
and publishing them to the corresponding access-switches,

4For an end host that is VEIL-enabled, it may run an explicit association
protocol to associate with its host switch (similar to the host/AP association in
802.11 wireless LAN), reports its MAC/IP address, learns its vid assignment,
and set its interface to receive packets with the destination MAC address equal
to its vid. For such hosts, no pid/vid translation is needed at the host switch.

whenever changes take place. VEIL is also completely compat-
ible with the current Ethernet semantics such as ARP/RARP,
DHCP and VLAN. As explained in Sec. III-C, the ARP
protocol is supported with a flooding-free lookup/query mech-
anism. Similarly, RARP and DHCP can also be supported:
a host-switch simply intercepts the appropriate packets, and
then forwards them via unicast to appropriate destinations.
Moreover, VLAN can also be accommodated by, say, setting
aside the first 8-bit of the switch-vid as the VLAN number.
For each VLAN, there will be one corresponding (virtual)
VEIL network, each with its own logical topology and vid
sub-space. In this way, VEIL can inherit all the advantages of
VLANs, while at the same time improving scalability, security,
and network management.

IV. INITIAL EVALUATION

To evaluate the performance of the proposed VEIL architec-
ture, we have implemented it in a simulation framework using
JAVA and Omnet++ [1]. Since there is no publicly available
large campus network topologies, we tested VEIL using some
of the AS topologies available from RocketFuel [15] , and
several data-center topologies. We present our results for
the following three topologies: i) AS 3257: This topology
consists of 506 nodes and 750 edges. ii) AS 4755: This
topology consists of 226 nodes and 285 edges. iii) Data
center topology: We use a fat-tree like topology to represent a
typical Data-Center network [2]. It consists of 9 core switches,
18 aggregation switches and 18 intermediate switches in the
topology.
Evaluating the vid Assignments. Using the three topologies,
we evaluate the efficacy of the vid assignment in generating
a topology-aware vid space, using the distributed bottom-up
clustering algorithm mentioned in the paper. We first assign
each node in the network with a randomly assigned flat-id (as
a proxy for the MAC address (pid) of the node). The flat-id
distance between a pair of nodes is defined as the difference
of number of bits used to represent a vid and the length of
the longest common prefix of their flat-ids. (This would be the
logical distance between two nodes if one were to directly use
these flat-id pid’s for routing, as in [3], [4]). Using the random
flat-id assignment, Fig. 4(a) shows the distribution of flat-id
distances of all node-pairs, as a function of their physical
distances (measured in terms of hop counts). In contrast,
Fig. 4(b) shows the same distribution of logical distances using
our distributed VEIL id assignment algorithm. We see that
using the VEIL id assignment, the logical distance increases
linearly with increasing physical distance. This shows that the
VEIL id assignment indeed embeds the physical topology into
its structured vid space.
Routing Stretch. The routing stretch is defined as the ratio of
the path length taken by a packet from a source to a destination
using the VIRO routing protocol to that of the shortest (min-
hop) path between the two nodes. As shown in the Fig. 4(c),
the routing sketch stays between 1-1.5 for most of the pairs.
Hence the VEIL VIRO routing protocol incurs a fairly small
routing sketch, while affording more scalability and resiliency.

6

5 10 15

3

3.5

4

4.5

5

5.5

6

Physical(MinHop) distance

F
la

t−
id

 d
is

ta
nc

e

AS 4755
AS 3257
Data−Center

5 10 15

6

8

10

12

14

16

18

Physical(MinHop) distance

Lo
gi

ca
l d

is
ta

nc
e

AS 4755

AS 3257

Data−Center

5 10 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Physical(MinHop) distance

R
ou

tin
g

S
tr

et
ch

AS 4755

AS 3257

Data−Center

(a) Flat-id Distance (b) Logical Distance (c) Routing Stretch (d) Routing Table Size

Fig. 4. Evaluation results for VEIL

Routing Table Size. In Fig. 4(d), we compare the size of per
node routing tables for VEIL (using VIRO routing protocol)
and link-state-based shortest-path (as used in SEATTLE) rout-
ing protocols. The huge difference in the routing table sizes
comes from the fact that the number of routing table entries
in the shortest path routing algorithm scales with the number
of nodes in the network; in VEIL, it scales logarithmically.

10
0

10
1

10
2

10
2

10
3

10
4

Switches (routing nodes)

of

 c
on

tr
ol

 p
ac

ke
ts

 p
ro

ce
ss

ed

AS 4755 VEIL
AS 3257 VEIL
Data−Center VEIL
AS 4755 Link−State
AS 3257 Link−State
Data−Center Link−State

Fig. 5. Control overhead comparison for VEIL and Link State routing
protocol.

Control-Overhead. In Fig. 5, we compare the control over-
head for both VEIL and link-state-based routing protocols, in
terms of the number of control packets processed by each
node for a single round of routing table construction. We
see that compared to the link-state routing protocol, VEIL
significantly reduces the control overhead. This reduction
in control overhead is achieved by VEIL, as it eliminates
network-wide flooding, while the link state routing protocol
requires network-wide flooding of link state packets.
Prototyping VEIL using OpenFlow switches. Open-
Flow [10] is a recently developed platform to allow the
programmability of switches in the enterprise/campus net-
works. We are currently working on the prototype of VEIL
based forwarding using OpenFlow switches. We also plan to
implement VEIL using the Click software router platform.

V. CONCLUSION & ON-GOING WORK

In this paper we have presented VEIL—a novel, “plug-&-
play” Virtual (Ethernet) Identifier (Id) Layer for below IP net-
working. The key idea in our design is to introduce a topology-
aware, structured virtual id (vid) space onto which both
physical identifiers as well as higher layer addresses/names are

mapped. VEIL completely eliminates network-wide flooding
in both the data and control planes, and thus is highly
scalable and robust. Our initial simulation-based evaluation has
demonstrated the immense scalability and robustness of VEIL.
We are currently conducting extensive simulations to further
evaluate the performance of VEIL and finalize the protocol
and other mechanism development. As part of the on-going
work, we will plan to implement VEIL using the OpenFlow
switches and the Click software platform.
Acknowledgement. This work is supported in part by the
National Science Foundation grants CNS-0626808 and CRI
0709048.

REFERENCES

[1] Omnet++: A discrete event simulation environment. http://www.
omnetpp.org/.

[2] M. Arregoces and M. Portolani. Data center fundamentals. Cisco Press,
2004.

[3] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: network routing inspired by dhts. SIGCOMM
Comput. Commun. Rev., 2006.

[4] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica.
Rofl: routing on flat labels. In SIGCOMM, 2006.

[5] B. Ford. Unmanaged internet protocol: taming the edge network
management crisis. SIGCOMM Comput. Commun. Rev., 2004.

[6] S. Jain, Y. Chen, Z.-L. Zhang, and S. Jain. Viro: Scalable, robust and
naming-proof plug & play routing. In Tech report. http://www.cs.umn.
edu/∼sourj/techreports/viro.pdf.

[7] C. Kim, M. Caesar, and J. Rexford. Floodless in seattle: a scalable
ethernet architecture for large enterprises. SIGCOMM, 2008.

[8] G.-H. Lu, S. Jain, S. Chen, and Z.-L. Zhang. Virtual id routing: a scalable
routing framework with support for mobility and routing efficiency. In
MobiArch Workshop, 2008.

[9] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In Proceedings of IPTPS02, 2002.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. SIGCOMM, 2008.

[11] A. Myers, E. Ng, and H. Zhang. Rethinking the service model: Scaling
Ethernet to a million nodes. In HotNets, 2004.

[12] R. Perlman, J. Touch, and A. Yegin. RBridges: transparent routing. In
IEEE INFOCOM, 2004.

[13] T. L. Rodeheffer, C. A. Thekkath, and D. C. Anderson. Smartbridge: a
scalable bridge architecture. In SIGCOMM, 2000.

[14] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh. Viking: A multi-
spanning-tree Ethernet architecture for metropolitan area and cluster
networks. In IEEE INFOCOM, volume 4, 2004.

[15] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring isp
topologies with rocketfuel. IEEE/ACM Trans. Netw., 2004.

