Service Oriented Internet *

Jaideep Chandrashekar!, Zhi-Li Zhang', Zhenhai Duan?, and Y. Thomas Hou?

1 University of Minnesota, Minneapolis, MN 55455, USA,
{j ai deepc, zhzhang, duan}@s. umm. edu
% Virginia Tech, Blacksburg, VA 24061, USA,
t hou@t . edu

Abstract. Effective service delivery capabilities are critical to the transformation
of the Internet into a viable commercial infrastructure. At the present time, the ar-
chitecture of the Internet is inadequately equipped to provide these capabilities.
Traditionally, overlay networks have been proposed as a means of providing rich
functionality at the upper layers. However, they suffer from their own drawbacks
and do not constitute a perfect solution. In this paper, we propose a novel, overlay
based Service Oriented Internet architecture that is meant to serve as a flexible,
unifying and scalable platform for delivering services over the Internet. As part
of this architecture, we introduce a new two-level addressing scheme and an as-
sociated service layer. We also describe the functionality of the new network ele-
ments that are introduced, namely service gateway and service point-of-presence,
and subsequently discuss algorithms that are responsible for distributing service
reachability across the overlay framework. We also present a few examples of
application services that benefit significantly when deployed on our architecture.

1 Introduction

Over the last decade, the unanticipated popularity of applications such as the World
Wide Web and E-mail has transformed the Internet into the de facto global information
infrastructure that underlies much of today’s commercial, social and cultural activities.

People rely on the Internet for a variety of services essential to their daily lives,
ranging from communications and information access to e-commerce and entertain-
ment. Because of this, many new requirements of Internet services are more critical and
urgent than ever before. These requirements include service availability and reliability
(i.e., “always-on” services), quality and security. In spite of this, the Internet is still
essentially a “best-effort” entity with end-to-end connectivity being its only service of-
fering. In its present form, this architecture cannot adequately support the requirements
of emerging services. Various ad-hoc mechanisms have been proposed and deployed
to address these different issues. Examples include the deployment of CDNs (content
distribution networks) and the widespread use of Network Address Translation. How-
ever, it is important to realize that ad-hoc solutions are by nature temporary short term

* This work was supported in part by the National Science Foundation under the grants ANI-
0073819, ITR-0085824, and CAREER Award NCR-9734428. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the National Science Foundation

measures — they do not address the underlying problem, and in some instances simply
shift the bottlenecks elsewhere.

In this paper, we describe a new architecture — the “Service Oriented Internet”
or SOI, which can be described as an efficient, generic and unifying framework for
enabling the deployment of new services. In the design of the SOI architecture, we
introduce three key abstractions: (1) the notion of a service cloud, which is a collec-
tion of service entities that are deployed by a service provider. The simplest example
would be a cooperating hierarchy of web proxy servers; (2) a new two-level, location-
independent addressing scheme; and (3) a new abstract service layer that is used for
forwarding packets to the appropriate service endpoints.

The main contributions of this paper are two-fold. We first present a critique of the
current Internet architecture, highlighting obstacles in supporting future requirements
of applications and services. Secondly, we outline an architectural framework that ad-
dresses these obstacles. We would like to think of our architecture as an evolutionary
guideline that would enable the Internet to become a viable platform for the delivery of
services. Specifically, the proposed architecture provides support for newer applications
with service requirements beyond what can be currently realized. The architecture also
introduces an economic framework which could be used to provide QoS support for
applications that require it.

2 ServiceOriented Internet

In recent times, overlay networks have emerged as an effective way to implement func-
tionality which otherwise would require significant change at the IP layer. Such net-
works are appealing because they can be realized with very little infrastructure over-
head. A set of end-nodes can decide to form an overlay, and cooperatively construct it,
without any additional support from the network or the ISP’s.

However, this transparency comes at some cost. First, by being completely oblivious
of the underlying network layer, there are certain inefficiencies that cannot be avoided
— very often, an overlay neighbor could actually be very far away in terms of the IP
level network. Secondly, it might be that a particular overlay provides some service that
is mandated on a well behaved underlying network. In the present case, ISP’s do not
differentiate between packets that will be routed to an overlay (or packets being for-
warded on an overlay network) and other packets. This could be to the detriment of the
application. For example, in the instance of a multicast overlay used for conferencing,
it is reasonable to expect that the overall experience would be benefited by some prior-
itization of packets that are being exchanged on this overlay. If the packets meant for
the overlay are similar to all the other transiting packets, there is no way to provide this
service differentiation. Now, if we can imagine a situation where the ISP was in some
sense “overlay-aware” and also that packets heading to the overlay could be identified,
then it might be possible to ensure that a certain degree of service differentiation is pro-
vided, leading to a better experience on the overlay. For this to happen, in a realistic
setting, the ISP would need some economic incentive to actually do this. Third, if we
were to imagine a number of overlay networks in operation (over the same underly-
ing network), each of the overlays would be replicating some common functions. For

example, consider a situation where overlay A provides a streaming video service and
overlay B is used for multicast video conferencing. Since both overlays are dealing with
real-time traffic, they probably involve some active measurement component, running
independent of each other. A far more efficient architecture would decouple the active
measurement component from the overlay operation and allow the different overlays
to share the the measurement infrastructure. A similar idea has been discussed in [1],
where the authors advocate a routing underlay that takes over the common tasks.

The primary argument that we make through our architecture is that services can be
deployed as overlays, but to address the performance limitations of the overlays and to
ensure support for the requirements of newer applications, we also need an underlying
infrastructure which addresses the shortcomings listed above.

In the rest of the paper, we focus on the details of the infrastructure and how it
can be realized. To make the description complete, we also use examples to show how
specific services can be realized and supported over the infrastructure.

2.1 Overview

In our architecture, we distinguish between the data transport networks, which roughly
correspond to the existing autonomous systems (and the IP networks), and the service
overlay networks (SON), each of which can be thought of as providing a well defined
service. The role of the data transport networks is to provide bit-pipes as a service to
the service overlay networks.

The service networks, on the other hand, are designed to provide specific value-
added services to subscribers. These networks are operated by service providers and
can be visualized as clouds which interface at multiple points with the data networks.
Client requests are routed over the data network to the nearest (or most appropriate)
point of entry into a particular service cloud. The client’s request is then served from
some host inside the cloud. This high level description is depicted in Figure 1, with the
data networks shown towards the bottom of the figure and the service clouds near the
top.

The logical decoupling between the data network domains and the service networks
allows the independent evolution of each, allowing for flexible deployment of future In-
ternet services while still supporting existing services. This logical independence is an
artifact of completely separating the addressing, routing and forwarding mechanisms
in the two realms. A service cloud could implement each of the mechanisms indepen-
dently, as best suits its needs. There are three elements that are key to this separation,
namely: a new naming and addressing scheme that is a significant departure from the
existing IP addressing scheme, service gateways (SG), and service points-of-presence
(S-PoP). Each of these will be described in this section.

2.2 Key Abstractions

The SOI architecture is built on top of the existing IP infrastructure, and provides a
common platform for flexibly deploying new Internet services and effectively support-
ing their diverse requirements. The architecture is based on three key abstractions, as
follows.

Service Cloud % E E % E %

|

) it BT
Service E E E
Point-ofPresence

Service directory

=

Service Gateway % ﬁﬁ
i ST
=2 = P =5 B
{ o fm\ T
)
Network Domai o
- A
& e

T

.;_,_,

w

e

Fig. 1. lllustration of the SOI architecture.

Service Cloud abstraction: A service cloud is a collection of service entities (e.g.,
servers, proxies, caches and content switches) that are deployed over the Internet (typ-
ically at the network edges) to collectively and collaboratively provide a set of appli-
cation/information services to users. It is a “virtual service overlay network” that is
commonly owned and managed by a single provider or a consortium of application
service providers, and it relies on the underlying IP data network domains for data de-
livery across the Internet®. Each service cloud has one or more points interfacing with
the Internet, referred to as the service points-of-presence (S-PoPs). Objects enter or exit
a service cloud only via its S-PoPs.

Service-oriented addressing scheme: The central idea of the SOI architecture is a
new two-level addressing scheme that provides location-independent identification of
service clouds and objects within these clouds. Each service cloud is uniquely identi-
fied by a fixed-length service id (sid); and an object within a service cloud is specified
by a (generally variable-length) object id (oid). The syntax and semantics of sid is
globally defined and centrally administered, just like today’s IP addresses (or rather
network prefixes); whereas the syntax and semantics of oid are defined by each indi-
vidual service cloud, and thus are service-specific. Moreover, they are never interpreted
outside the service cloud.

Service (routing/delivery) layer: Underlying the SOI architecture is a new service
layer that resides above the IP network layer. Corresponding to the two-level (sid, oid)
addressing scheme, the service layer comprises two new network elements with distinct
functions: service gateways (SGs) and service points-of-presence (S-PoPs). SGs can be
viewed as extensions of the underlying network domains who own and manage them,
and are typically deployed at the edge of a network domain. They examine only the sid
part of the two-level address and are responsible for routing and service delivery across

3 Note that the separation between data transport domains and service clouds is purely logical.
It may well be that the nodes in the service cloud use the IP networks to move data between
them.

network domains. S-PoPs are the interface points of a service cloud with the network
domains, and are thus logically a part of the service cloud (and hence are oid-aware).
They are responsible for delivering objects within a service cloud. SGs and S-PoPs
work together to support flexible end to end delivery.

All data destined for a service cloud passes through a particular service gateway,
which is owned and managed by the network domain. This provides a way for the net-
work domain to accurately identify and track traffic meant for the overlay networks.
Also, since each service cloud has a distinct identifier, it is possible for a service gate-
way to perform service differentiation. This provides a framework in which economic
incentives can be applied — and is one of the key features of our architecture. A con-
crete example of how this can be used is presented in Section 4.3.

3 SOl Architecture

In this section, we present the key components of the proposed SOI architecture, de-
scribe their basic operations and run through a typical transaction.

dst IP address
P next
Header src IP address hop
Protocol Stack

dst service id

dst service modifier eg?‘;c Application Layer

. service S-POP
src service id delivery Transport Layer
Service - -
src service modifier 5 Sevice Specific Sevice Specific
Head
eader B Delivery Sub-layer Delivery Sub-layer Service Gateway
within 8 Common Service Common Service GC"lmm""SSZ'IV'Ce 1P Router
. > -I -1 ateway Sub-layer
dst object id serviee g Gateway Sub-layer Gateway Sub-layer y y
— cloud 1P Layer 1P Layer 1P Layer \ 1P Layer
src object id v o v o USRS JOS

Fig. 2. Service object header for- Fig. 3. Service layer and the SOI protocol stack.
mat.

3.1 Addressing and Name Resolution

The name resolution should return a two level address corresponding to the (sid, oid)
addressing scheme. One of the key features of our architecture is that the resolution
separates these two address components. At a very high level, we could say that the sid
mapping is performed external to the service cloud, while the oid mapping is performed
inside the cloud. The advantages of this should become clear shortly.

Under the proposed SOI architecture, each application/information service provider
who wants to deploy services over the Internet is assigned a single fixed-length (32 bit)
service id, which is administered by a central authority (just like IP addresses). This is a
departure from the IP addressing scheme, where a “cloud” (network domain) is assigned
a contiguous range of addresses (address block or network prefix). Each service cloud

can be roughly thought of as corresponding to an organization currently having a second
tier (e.g., yahoo.com, msn.com, real.com) or third tier (e.g., shop.msn.com, nu.ac.cn)
domain name*. Such domain names will be retained in our SOI architecture as the
names of service clouds, and are referred to as service names. To resolve the service
name of a service cloud to its assigned sid, we can reuse the current DNS infrastructure
(extending it so that names resolve to sid’s), or build a similar service name resolution
system. The specific details of the service name resolution are out of the scope of this
paper. It suffices to say that there are a number of existing approaches that can be readily
adapted for our purpose. It is important to note that the mappings can be cached locally
(with a reasonable sized cache), since the number of service names is significantly
smaller than the number of domain names in the current DNS system, and service-
name-to-sid mappings are essentially static. Hence, under the SOI architecture, service
name resolution can be done with very little overhead (on the shared infrastructure).

In contrast to the sid space, the oid space is defined by each individual service
cloud, with its own syntax and semantics. This gives each service cloud the maximum
flexibility and efficiency for defining its own object naming and addressing system
to meet its business needs. It also off-loads many service-specific functions (e.g., ob-
ject resolution, internal routing, load balancing, etc.) to individual service clouds. This
mechanism promotes a socially optimal solution. Providers that want more complicated
mechanisms to perform the name resolution are forced to hide the complexity inside
the service clouds. In addition, hiding the syntax and semantics of a service cloud’s oid
space from outsiders makes it more secure. This makes it very difficult for an attacker
to lanch a DoS attack targeting a particular server, since the corresponding oid can be
dynamically re-mapped.

Service Layer: For convenience, we refer to a service-layer protocol data unit as a
service object. Figure 2 shows an abstract representation of a service object header. The
header is partitioned into two logical sections, the sid part and oid part. Associated
with both destination sid (dst sid) and source sid (src sid) is an additional 32-bit
service modifier, which is defined by a service cloud to influence the forwarding of
service objects. The service modifier contains two types of information: S-PoP attribute
and service attribute (see Figure 8 for an example). The S-PoP attribute describes the
properties of S-PoPs, and in general contains two sub-fields, an S-PoP level and an S-
PoP id. For example, using S-PoP attributes, a service cloud can organize its S-PoPs
in a certain hierarchy to best meet its service delivery needs®. The service attributes
are used to indicate a preference for different service classes, next hops, etc. Multiple
service attribute sub-fields can be defined as appropriate. One possible use of these
attributes is explained in Section 4.

When a service object is generated, both the sid and oid parts of the header are
filled appropriately by an application program (e.g., a browser). However, to ensure

4 This is not mandated by our architecture, and is just a suggestion that reflects the belief that
most current service providers fall into these categories.

5 It must be pointed out that this is but one possible interpretation. Since the SG does not need
to understand the exact semantics of the modifiers, the service cloud can define them as appro-
priate.

security, we require that the originating service cloud must verify the source sid of
the object before it passes outside the service cloud. In fact, we can even allow for in-
flight sid resolution, i.e. the end-host sends a service object to the service gateway, the
service gateway initiates the service name resolution, fills in the sid appropriately, and
forwards the packet to the corresponding next-hop. These mechanisms enforce ingress
filtering [2], and prevent address spoofing.

Figure 3 shows the relative position of the service layer in the protocol stack. Also
shown in the figure are the layers of the stack that are interpreted by the different entities
along the path. This should serve to clarify that the service layer lies above the IP layer
and is completely independent of it.

The service layer consists of two sub-layers: the common service gateway layer
where only sid’s are used to determine how to forward objects among service clouds;
and the service-specific delivery layer where oid’s are used to decide how objects are
delivered within a service cloud.

Service Gateway: The data plane function of an SG is to forward a service object to an

appropriate next-hop on the path to the destined service cloud (this could either be an

adjacent S-PoP, or another SG), using the dst sid (or both dst sid and src sid) and

the associated service modifier(s). For this purpose, each SG maintains a service routing
table (similar to an IP routing table), which is built by running the service gateway

routing protocol (SGRP), the control plane function of an SG. The service routing table

contains mappings from a dst sid (and, if specified, an associated service modifier) to
a next-hop SG/S-PoP (specified by IP address). From an infrastructure point of view,
we expect the SGs to be deployed by the Autonomous Systems.

Service Point-of-Presence: An S-PoP plays two major roles: 1) it cooperates with SGs

to route and forward service objects to/from the service cloud it proxies for; and 2) it

cooperates with other S-PoPs in the service cloud to route and forward a service object

within the service cloud. The latter role is determined by the service-specific routing

protocol and forwarding mechanisms employed by the service cloud. The internal op-

eration of the service cloud will not be addressed here, but a brief discussion of some

of the existing possibilities are listed in Section 5.

To begin receiving service objects from the data networks, an S-PoP participates in
SGRP, advertising its presence and properties to neighboring SGs. It builds a (partial)
service routing table which maps the service id space to appropriate neighboring SGs,
and uses it to forward service objects out of its service cloud.

3.2 Service Gateway Routing Protocol

This protocol is mainly responsible for constructing the forwarding tables on all of the
Service Gateways. At a very high level, SGRP involves two distinct functions, each of
which is described in turn. The first component involves the individual S-PoPs register-
ing themselves with the local SG. This has the effect of making them eligible to receive
traffic for the cloud they represent. The second component, which is somewhat similar
to the BGP protocol, distributes this reachability information to all the other SGs.

S-PoP registration and advertisement: When a new S-PoP of a service cloud is de-
ployed in the Internet, it must announce its availability to the rest of world. This is done

by the S-PoP advertising its presence to and registering itself with the SGs it is (logi-
cally) adjacent to®. In the registration process, the S-PoP sends the nearby SGs the sid
of the service cloud it represents and a set of service modifiers it supports.

The set of service modifiers essentially describes the capabilities of the S-PoP and
tells the SGs exactly what kind of traffic it can handle (as a subset of the traffic that is
destined for its service cloud)’. Only service objects with a service modifier matching
one of the service modifiers advertised should be forwarded to the S-PoP. A null set
means that the S-PoP can handle all traffic destined to its service cloud.One operational
possibility is that the set of service modifiers is represented as an ordered list of bit-
pattern matching rules (e.g., using regular expressions).

Note that there is no need for an SG to understand the syntax or semantics of the
advertised service modifiers in order to perform the bit-pattern matching. This is im-
portant, since the syntax and semantics of the advertised service modifiers are defined
by each individual service cloud, and thus are service-specific.

Propagating Service Reachability: This component of SGRP uses a path vector pro-
tocol model similar to that used in BGP [3]. However, we use a novel mechanism to
limit path exploration which is the fundamental cause of the slow convergence in path
vector protocols. Due to a lack of space, we are forced to make this discussion brief, so
we present a very high level overview of the Service Reachability Propogation mecha-
nism of SGRP. A more detailed account of this idea is presented in [4].

SGs perform a function similar to that of BGP routers, albeit propagating service
reachability (as opposed to network reachability). Each SG “learns” of a number of
paths from neighboring SGs, from which it selects a single best path. This best path
is announced to all its neighbors (with the exception of the neighbor that the best path
was learnt from). The key departure from BGP is that in our architecture, distinct S-
PoPs could be associated with the same sid, with the effect that multiple SGs announce
reachability for the same sid. In the following, we describe some key concepts that are
central to our scheme.

First, we introduce the notion of a fesn (or forward edge sequence number), which is
an integer value associated with an SG-SG edge® (and a specific sid). Consider two SGs,
A and B, which are adjacent. Suppose that A is announcing reachability for sid d to
SG B for the first time. It initializes an fesn that is directly associated with the neighbor
B and the service identifier d. The adjective forward signifies that these numbers are in
the context of outgoing edges (i.e. the direction that messages are sent). The value of the
fesn is modified only by the “owner” (which in the current case is SG A). In particular,
the value of the fesn is incremented when the edge between two SGs comes back up
after a failure event, or when an SG re-advertises reachability for a sid (following a
previous withdrawal) — these are the only scenarios that could cause an fesn to change.
Note that an fesn is associated with a unique SG-SG, and essentially tracks the status

8 By this, we mean that the two SGs can talk to each other directly (at a layer above the network
layer.)

7 As an example, consider a content distribution cloud; here a particular S-PoP can declare via
the service madifiers, that it can handle dynamic content.

8 To simplify the description, we assume that there is at most one SG within an AS.

of this edge over time. The monotonicity of the fesn allows an SG to determine if an
advertisement is new.

Atany SG (say A), given an AS path P and a neighboring SG node, B, we associate
with it a fesnList, which is the ordered list of fesn’s corresponding to SG-SG edges along
the path from B to the destination. Note that for a given AS Path, the fesnList is unique.
To make the distinction between a path and the fesnList, consider a simple example. Let
SG A be adjacent to SGs B and C, to whom it is about to announce the same selected
best path. The paths announced to B and C would be the same, but the associated
fesnLists are distinct (since the fesns that correspond to the edges A — Band A — C are
distinct).

When an SG sends a service reachability announcement, it includes the sid, the AS
Path, the associated fesnList, along with any service modifiers or additional attributes.
If the SG is originating the reachability, as would happen if the sid was announced by
a local S-PoP, the fesnList will only contain the single fesn (i.e. that of the outgoing
edge.) On the other hand, if the announcement is being forwarded, i.e. the reachabil-
ity was learnt from another SG, then the fesn (corresponding to the recipient of the
announcement) is appended to the fesnList before being sent.

In the event that the edge between SGs A and B fails, or if A decides to stop ac-
cepting traffic from B for a sid d, then A generates a withdrawal message and sends
it to B. The contents of this message include the sid being withdrawn, the path being
withdrawn, and the fesnList associated with this path.

All service announcements and withdrawals carry the path being announced (or
withdrawn) along with the associated fesnList. This is in contrast with the behavior in
BGP, where withdrawal messages do not carry any path information.

The fesnList is used for two different purposes. First, it allows an SG to determine
whether a message received corresponds to new information. By the monotonicity of
the individual fesns, only repair (or re-advertisement) events would cause the fesnList
to change. Thus, an SG only needs to process the first message received with a different
fesnList (from the one that it already knows about). Secondly, it allows an SG to cor-
rectly determine which paths to invalidate upon receiving a withdrawal. The fesnList
for any two SG level paths are distinct even though the AS level paths might be the
same. Thus, upon receiving a withdrawal, an SG can correctly invalidate all paths that
it knows about which contain (as a prefix) the withdrawn path. This eliminates the prob-
lem of path exploration which causes the slow convergence in traditional path vector
protocols.

When a withdrawal is received at SG B that causes Bs preferred path to change,
the (same) withdrawal is sent along with the announcement of the new path in a sin-
gle message. Correspondingly, at the receiving node, the advertisement for a new path
could have an attached withdrawal. In such a case, the withdrawal is processed first and
subsequently the announced path is included in the path-set. On the other hand, if the
received withdrawal causes all the available paths to be invalidated, indicating that there
is no path to the destination, the withdrawal is propagated immediately. However, sup-
pose only an announcement is received (without an accompanying withdrawal). Then
the newly received path is included in the pathset and the best path recomputed. If the
best path changes, then it is subsequently announced to the neighbors (along with the

Fig.4. Time complexity for Clique Fig.5. Time Complexity for Power Fjg 6. Communication complexity for
topologies Law Random Graphs Random Network

associated fesnList). Note that this announcement is subject to the hold timer constraint
used to delay advertisements. Table 1 describes the step-by-step operations that are car-
ried out when a withdrawal (or an announcement) is received at an SG.

In Figures. 4,5 and 6 we show the results of some simulations, carried out using the
SSFNet simulation suite, comparing the performance of BGP and SGRP. In order to
these protocols, we used only a single (unique) sid for each node. Each topology had
nodes numbered from 0 through n. A special node, d (which originated some sid) was
attached to node 0. At some time, d was disconnected from the network and two metrics
were measured — convergence time and communication complexity. Figures 4,5 plot
the size of the network (clique and power law topology, respectively) against the time
taken (after d is disconnected from the network) for all the nodes to converge. In Figure
6, the x axis represents the size of the network (which is a random graph), while the
y axis represents the number of messages that were exchanged in the network during
the period of convergence. As can be seen in all the graphs, our scheme dramatically
outperforms BGP for both of these metrics, and clearly demonstrates the advantage of
limiting path exploration. We also carried out simulations with different topologies and
failure scenarios, which we had to omit for lack of space. These results are presented in
a related paper [4].

Table 1. Service Reachability Propogation

[[Service W thdrawal [Service Announcement |

validate the fesnList validate the fesnList

update the pathset by marking dependent paths invalid if withdrawal is defi ned, update the pathset by marking de|
pendent pathsinvalid.

Include P into the pathset.

select best path select best path

if best path is empty, then send withdrawal to all neighbors. |if best path changed, package best path and received with-
Otherwise, (if best path changed) package best path and re-|drawal (if any), and send to all the neighbors.

ceived withdrawal and send to all the neighbors

[y

N

g B W

4 Examples

In this section we present three generic situations in which our architecture provides a
tangible benefit. In the first example, we detail how a multimedia content delivery ser-

vice would be supported in our architecture. This example demonstrates how a service
cloud could, by associating some consistent semantics with the service modifiers, dic-
tate the forwarding behavior at the Service Gateways. The second application presented
is that of an integrated communications service. This examples illustrates the powerful
mechanisms that can be supported inside a service cloud, without any of the complexity
being visible externally. The last example presented is that of a large scale VoIP service.
This was chosen to illustrate the utility of the economic framework that is enabled by
our architecture, and which can be used to provide QoS support to applications that
require it.

4.1 Multimedia Content Delivery

Consider a service cloud that provides multimedia content delivery services. To support

its services effectively, the service cloud deploys a collection of S-PoPs organized in a

3-level hierarchy as depicted in Figure 7. At the top of the hierarchy (level 1) are central

S-PoPs, which are the front-ends to replicated central servers with a complete object

repository. The intermediate level (level 2) are regional S-PoPs which are the front-

ends to proxy servers that have a partially replicated object repository. At the bottom

level (level 3) are local S-PoPs which are the front-ends for local cache servers. The

local cache servers are only deployed inside network domains with large user bases.

Hence not all level-2 S-PoPs have level-3 S-PoPs attached. The service cloud uses a

one-byte field to specify the S-PoP attribute (see Figure 8), of which a 2-bit sub-field
indicates the S-PoP level and a 6-bit sub-field indicates the S-PoP id within a level.
S-PoP level 0 and S-PoP id 0 are default values, which are used to represent wild-card

matching.

S-POP S-POP

. service attribute sub-fields
level id

>
S-PoP
attribute

service attribute

v

32-bit

Fig. 7. A three-level S-PoP hierarchy. Fig. 8. Service modifier.

To efficiently deliver its content using the S-PoP hierarchy, the service cloud defines
a 2-bit service attribute sub-field to specify the cacheability of its content: popular (i.e.,

highly cacheable), normal (cacheable, the default value), rare (cacheable, but generally
not cached), and dynamic (not cacheable). Popular content is preferably serviced from
a local cache via a level-3 S-PoP if there is one close by, otherwise via a level-2 S-PoP.
Normal content is generally serviced from a proxy server via level-2 S-PoP, while rare
content from a central server via a level-1 S-PoP. Request for dynamic content is prefer-
ably processed by a proxy server via a level-2 S-PoP, which is responsible for forming
the dynamic content, retrieving appropriate content from a central server if necessary.
These guidelines for content delivery can be represented as a set of bit-pattern match-
ing rules using the S-PoP level and the cacheability service attribute sub-field. Regular
expressions, for instance, can be used for specifying such bit-pattern matching rules.

The S-PoPs register with the neighboring SGs of the underlying network domains,
and advertise their presence and service capabilities (represented by a set of bit-pattern
matching rules which specify the service modifiers it can handle). SGs formulate ser-
vice reachability advertisements (SRAS) for the service cloud and propagate them after
performing appropriate filtering and aggregation processing. From SRAs received, each
SG can build corresponding entries in its service routing table. We want to emphasize
that SGs do not need to understand the syntax and semantics of the service modifiers
defined by the service cloud®. All that is required is the ability to manipulate regular
expressions and perform table look-ups. This is a key feature of our SOI architecture,
as it allows for simple and efficient SG implementation, while providing maximum
flexibility in supporting diverse Internet services.

The cacheability service attribute of content can be embedded in an HTML (or
XML) page publicized by the service cloud, and filled accordingly by a client program
when a request is generated. Upon receiving a request for a popular object of the service
cloud, an SG will forward it to a nearby level-3 S-PoP (a local cache), if one exists. On
the other hand, requests for other content will always be forwarded to a level-2 S-PoP,
or a level-1 S-PoP if there is one close by. If a request for a popular object cannot be
satisfied by a local cache (i.e., a cache miss), the level-3 S-PoP will automatically re-
direct the request to a nearby level-2 S-PoP by changing the value of the S-PoP level
sub-field from 3 to 2. If a level-3 S-PoP fails, a nearby SG, upon learning of the failure,
will cease forwarding requests to it, and instead will forward them to a nearby level-2
S-PoP. In case of a level-2 S-PoP failure, an SG can automatically forward requests to
another level-2 or level-1 S-POP. In addition, an overloaded level-2 S-PoP can perform
load-balancing by re-directing requests to a light-loaded level-2 S-PoP by specifying
its S-PoP id (instead of the default value 0) in the S-PoP id sub-field.

4.2 Integrated Communications

We use this example to illustrate the advantages of the location-independent two-level
addressing scheme in supporting user mobility and a variety of other value-added ser-
vices such as personalized communications, anycasting and multicasting. The focus
will be on the functions of S-PoPs.

% In the present example, the SG is oblivious of the internal S-PoP hierarchy and content classi-
fication i.e. cacheability.

Consider a service cloud offering integrated communication services to its users
(subscribers of the services). It deploys a collection of S-PoPs organized in a flat, “peer-
to-peer” architecture. It allows users to define a number of communication modes such
as urgent, normal, and batch modes. In the urgent mode a subscriber wants to be no-
tified via all possible communication means such as cell phone, office/home phones at
various locations, email and instant messaging, etc. In the normal mode, communica-
tion requests will be directed to one of its communication means, e.g., the one the user
has turned on at a given moment, or if more than one have been turned on, the preferred
one (say the cell phone.) If it is not picked up immediately, an “alert” message is gen-
erated afterwards and sent to all communication means within a pre-specified time (for
example, 5 minutes). In the batch mode, communication requests are directed to the
user’s multimedia email-box, which the user may check at leisure.

Corresponding to these communication modes, separate user object ids (oids) will
be created for each user. When logging on to the service cloud (e.g., by turning on one
or more communication devices), a user registers with a nearby S-PoP that tracks and
records the locations of his/her communication devices. The user can (pre-)specify the
set of users he/she is willing to communicate in the different modes, making the corre-
sponding user oid’s only visible to the specified users. For instance, the urgent mode is
only for close family members and friends; normal mode for colleagues and acquain-
tances, etc. The personalized communication modes can be implemented by performing
the appropriate mapping between the logical oid and the physical devices. For exam-
ple, an S-PoP receiving an urgent call from a close family member will forward the call
to the S-PoPs to which the user’s communication devices are connected. The S-PoPs
then direct the call to these devices, transforming the message formats if necessary, e.g.,
a voice call to the cell phone, an instant text message to the PDA, a voice email to the
email account, etc. As the user moves around, the S-PoPs will update various mappings
between the logical oid’s and physical devices.

Data Network Domains

x
S
g sty
B ; H— Q VolP Users
g N / 7\
o N e .
a Fe \ Pay for VolP Provide VolP
2 ol i service service
| ogical link v
" VolP Provider
E A i
2 . Provide
2 Pay for service provisioned
c SR
rovisionin 8
& P g v bandwidth
g
7
©
a

Fig. 9. An overlay network providing a VoIP ser- Fig. 10. Revenue flows and business relation-
vice. ships in the VOIP overlay network.

4.3 Voiceover |P service

This example particularly demonstrates how a service with QoS requirements can be
deployed using our architecture. A provider wishing to deploy the VolP service would
first enter into agreements with the underlying data networks, and by means of SLA’s
or some such enforcing mechanism, obtain some network pipes between the regions
where the service would be introduced. One possible service identifier space alloca-
tion could map users (or the particular device) to a unique sid. With the infrastructure
in place, users of the service would place calls by identifying the person that will re-
ceive the call. This request is routed to the service provider, and the lookup service
resolves this to a particular sid. Once the end points are mapped to the particular sid’s,
the flow of packets corresponding to the call are routed to the closest S-PoP (in both
directions). Once inside the service cloud, the packets are forwarded along the appro-
priate (pre-provisioned path) towards the S-PoP that is closest to the other end-point. A
high level illustration of this is provided in Figure 9. In fact, the S-PoPs described in
our architecture are very similar in functionality (in the context of a VOIP service) with
the gatekeeper entities in the established H.323 standard.

By means of purchasing pre-provisioned bandwidth pipes, the provider can get
around the problem of transiting peering points, which have been anecdotally identi-
fied as the bottleneck areas. In the absence of the provider entering into agreements
with both network domains (on two sides of a network boundary), there would have
been no incentive for the network providers to provide a better service for packets be-
ing transited for the VoIP provider. [5] presents an architecture for providing Internet
QoS using overlay networks, which can be used by the VoIP provider to construct the
\VolIP infrastructure. In fact, we argue that one of the benefits of our architecture is that
it puts in place a framework over which bilateral agreements can be implemented. The
economic relationships are illustrated in Figure 10.

The above examples help illustrate the versatility and flexibility afforded by our pro-
posed SOI architecture. We also see that, with the help of the new location-independent
two-level (sid, oid) addressing scheme as well as the SGRP protocol, this architecture
provides better support for service availability, reliability and mobility. Furthermore, the
SOI architecture facilitates the creation and deployment of new value-added services
such as QoS-enhanced services, enabling rich business models and economic relations
to be established among service clouds and network domains. Note in particular that,
since service modifiers are defined by each individual service cloud, there is no need for
a “global standard” such as IntServ [6] or DiffServ [7] — how the service is supported is
decided by the bilateral service agreement between a service cloud and an underlying
network domain. In addition, because of the location-independent addressing scheme,
the “opaqueness” of service clouds, and the ease and efficacy of object verification and
filtering based on sid and service modifier fields, our SOI architecture also greatly im-
proves security, effectively vitiating such threats as DDoS attacks and IP spoofing.

5 Reated Work

In this section, we contrast our own architecture with similar research in the area.

We introduce the abstraction of a service layer that takes care of the service delivery
from end to end. A somewhat similar abstraction has been mentioned in [8] where the
authors advance the notion of a “content layer”. The key idea in this work is that packets
carry the resource name rather than IP address, and the corresponding forwarding is
performed based on the carried name. However, given the unconstrained sizes of names,
it is not realistic to think that packet forwarding will ever be based on names.

There has been much effort put into supporting more advanced service primitives.
Overlay networks have been the most dominant mechanism to provide support for these
services. Recent proposals advocate the use of overlays to provide an extremely diverse
range of applications such as multicast [9, 10], multimedia broadcast distribution [11],
resilient routing [12] and content distribution. However, these proposals suffer from
scalability and performance issues native to the current overlay paradigm. Our archi-
tecture provides a way to address these issues by means of a underlying substrate that
would allow these applications to scale.

Within the domain of overlay networks, one of the interesting research issues has to
do with locating objects in the network. Most peer to peer (P2P) applications use either
a centralized directory, such as Napster or specify a flooding algorithm to propogate the
search through the overlay (as in the Gnutella network). These approaches do not scale
well with the size of the overlay, and there have been a number of recent proposals
that address this. The most prominent are the algorithms based on Distributed Hash
Tables [13, 14]. Though originally intended as a way to address the scaling problems in
existing P2P networks, they are complimentary to our architecture, since the algorithms
can be used inside a service cloud to locate objects.

The idea of supporting QoS over the Internet by means of overlays is discussed
in [15]. Such an idea fits very well into our framework, and suggest possible ways of
deploying overlays that require QoS support such as multimedia delivery, VoIP etc.

Perhaps the idea that comes closest to ours is that of i3 [16]. In this work, the overlay
paradigm is taken further to provide a common “indirection infrastructure” that is in-
terposed between the two parties in a transaction. This indirection decouples the sender
and receiver — which enables essential service primitives such as multicast, anycast,
host mobility etc. Our own work (in comparison) is broader in scope and addresses a
slightly different set of problems.

6 Conclusionsand Future Work

In this paper, we explored the inadequacies of the current Internet architecture — and its
inability to satisfy the requirements of emerging applications, and also briefly described
some capabilities that are currently lacking. It is our thesis that these capabilities are
critical to the transformation of the Internet into a viable platform on which services
can be delivered. The SOI architecture that we articulate in this paper has the capability
to transform the Internet into a viable framework for the flexible deployment of new
services. The architecture presented has the following properties.

1) Provides an infrastructure that can enable new Internet services that have require-
ments which cannot be currently satisfied —- such as reliability, security, service avail-
ability and QoS.

2) Leverages the existing IP infrastructure. It essentially introduces a service layer that
is laid over the IP network layer, and which uses the IP network layer to transport the
actual bits.

3) Extends the overlay network paradigm to be more efficient and scalable.

In our description, given the breadth of the architecture, we were forced to sacrifice
detail when describing certain components of our architecture so as to present a coher-
ent description in the limited space. At the same time, there are several details that were
glossed over in the design of our architecture, such as the exact specifics of the packet
forwarding, details of the service name resolution, and so on. In the future, we intend to
flesh out the details of these components and construct a prototype of our architecture
to evaluate its real world effectiveness.

References

1. Akihiro Nakao, Larry Peterson, A.B.: Routing underlay for overlay networks. In: Proc.
ACM SIGCOMM, ACM Press (2003)

2. Ferguson, P., Senie, D.: RFC 2827: Network ingress filtering: Defeating denial of service

attacks which employ ip source address spoofing. http://www.ietf.org/rfc/rfc2827.txt (2000)

Best Current Practices.

Rekhter, Y., Li, T.: A Border Gateway Protocol 4 (BGP-4) (1995) RFC 1771.

4. Chandrashekar, J., Duan, Z., Zhang, Z.L., Krasky, J.: Limiting Path Exploration in Path
Vector Protocols. Technical report, University of Minnesota (2003)

5. Subramanian, L., Stoica, I., Balakrishnan, H., Katz, R.H.: OverQoS: Offering internet QoS
using overlays. In: First HotNets Workshop, Princeton, NJ (2002)

6. Braden, R., Clark, D., Shenker, S.: RFC 1633: integrated services in the internet architecture
(1994)

7. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: RFC 2475: an architecture
for differentiated services (1998)

8. Gritter, M., Cheriton, D.R.: *an Architecture for Content Routing support in the Internet. In:
USITS. (2001)

9. Chu, Y.H., Rao, S.G., Zhang, H.: A case for End System Multicast. In: Proc. ACM SIG-
METRICS, ACM (2000)

10. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In:
SIGCOMM, ACM Press (2002)

11. Chawathe, Y.: Scattercast: An Architecture for Internet Broadcast Distribution as an Infras-
tructure Service. PhD thesis, University of California, Berkeley (2000)

12. D. Andersen, H. Balakrishnan, M.K., Morris, R.: The case for resilient overlay networks. In:
Proc. 8th Annual Workshop in Operating Systems. (2001)

13. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proc. ACM SIGCOMM, ACM Press
(2001) 149-160

14. Ratnasamy, S., Francis, P.,, Handley, M., Karp, R., Shenker, S.: A scalable content address-
able network. In: Proc. ACM SIGCOMM, ACM Press (2001)

15. Duan, Z., Zhang, Z.L., Hou, Y.T.: Service overlay networks: Slas, qos and bandwidth provi-
sioning. In: Proc. International Conference on Network Protocols. (2002)

16. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet indirection infrastructure.
In: Proc. ACM SIGCOMM, ACM Press (2002) 73—86

w

