Also see the much newer specialized
bibliography for Buildings,
Classical Groups, and Representations of p-adic Groups
The following biblography was compiled for my students. It is not at all exhaustive, and omits many recent papers.
One might also see Jeff Adams' representation theory reading list.
[Andrianov 1969] A.N. Andrianov, `Rationality theorems for Hecke series and zeta functions of the groups GL(n) and Sp(n) over local fields', Izv Akad. Nauk. SSSR 33 (1969); English trans. Math. USSR-Izv. 3 (1969), pp. 439-476.
[Andrianov 1970] A.N. Andrianov, `Dirichlet series with Euler products in the theory of Siegel modular forms of genus 2', Tr. Mat. Inst. Steklov 112, (1971), pp. 73-94; English trans. Math. USSR Sb. 12 no. 13 (1970), pp. 70-93.
[Andrianov 1987] A.N. Andrianov, Quadratic Forms and Hecke Operators, Springer-Verlag, 1987.
[Arakawa 1978] T. Arakawa, `Dirichlet series corresponding to Siegel's modular forms', Math. Ann. 238 (1978), pp. 157-73.
[Arthur 1978] J. Arthur, `A trace formula for reductive groups, I: terms associated to classes in $G(\Q)$', Duke J. Math. 45 (1978), pp. 911-952.
[Arthur 1980] J. Arthur, `A trace formula for reductive groups, II: applications of a truncation operator', Comp. Math. 40 (1980), pp. 487-522.
[Ash, Mumford, Rapoport, Tai 1975] A. Ash, D. Mumford, M. Rapoport, Y. Tai, Smooth Compactifications of Locally Symmetric Varieties, Math Sci Press, Brookline, Mass, 1975.
[Atiyah-Tall 1969] M. Atiyah and D. Tall, `Group representations, lambda-rings, and the J-homomorphism', Topology 8 (1969), pp. 253-297.
[Baily-Borel 1966] W.L. Baily, Jr., and A. Borel, `Compactifications of arithmetic quotients of bounded symmetric domains', Annals of Math. 84 (1966), pp. 442-528.
[Bargmann] V. Bargmann, `Irreducible unitary representations of the Lorentz group', Annals of Math. 2 (1947), pp. 568-640.
[Beilinson-Bernstein 1982] A. Beilinson and J. Bernstein, `A generalization of Casselman's submodule theorem', in Representation Theory of Reductive Groups, ed. P.C. Trombi, Birkhauser, Boston, 1982.
[Bernstein 1974] I.N. Bernstein, `All reductive p-adic groups are tame', Functional Analysis 8 (1974), pp. 3-5.
[Bernstein-Zelevinsky 1976] I.N. Bernstein and A.V. Zelevinsky, `Induced representations of the group $GL(n)$ over a p-adic field', Functional Analysis 10 (1976), pp. 74-75.
[Bernstein-Zelevinsky 1977] I.N. Bernstein and A.V. Zelevinsky, `Induced representations of reductive p-adic groups I', Ann. Sci. ENS 10 (1977), pp. 441-472.
[Bocherer 1983] S, Bocherer, `Uber die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen', Math. Z. 183 (1983), pp. 21-46.
[Bocherer 1985] S, Bocherer, `Uber die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen', Math. Z. 189 (1985), pp. 81-110.
[Borel 1966] A. Borel, `Introduction to automorphic forms', in Proc. Symp. Pure Math. 9, AMS, 1966, pp. 199-210.
[Borel 1969] A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.
[Borel 1969b] A. Borel, Introduction aux groupes arithmetiques, Hermann, Paris, 1969.
[Borel 1976] A. Borel, `Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup', Inv. Math. 35 (1976), pp. 233-259.
[Borel 1979] A. Borel, `Automorphic L-functions', in Proc. Symp. Pure Math 33 vol. 2 (1979), AMS, pp. 27-62.
[Borel-HarishChandra 1962] A. Borel and Harish-Chandra, `Arithmetic subgroups of algebraic groups', Annals of Math. 75 (1962), pp. 485-535.
[Borel-Serre 1976] A. Borel and J.-P. Serre, `Cohomologie d'immeubles et de groupes S-arithm\'{etiques', Topology 15 (1976), pp. 211-232.
[Borel-Tits 1965] A. Borel and J. Tits, `Groupes Reductifs', Publ. Math. I.H.E.S. 27 (1965), pp. 55-150; `Complements', Publ. Math. I.H.E.S. 41 (1972), pp. 253-276.
[Borovoi 1981] M. Borovoi, `Canonical models of Shimura varieties', handwritten notes dated Mar 26, 1981.
[Bourbaki 1968] N. Bourbaki, Groupes et Algebres de Lie, ch. IV-VI, Actualites Sci. Indust. no. 1337, Hermann, Paris, 1968; Masson, Paris, 1981.
[Braun 1938] H. Braun, `Zur theorie der Modulformen n-ten Grades', Math. Ann. 115 (1938), pp. 507-517.
[Braun 1939] H. Braun, `Convergenz verallgemeinerter Eisensteinscher Reihen', Math. Z. 44 (1939), pp. 387-397.
[Brown 1989] K. Brown, Buildings, Springer-Verlag, New York, 1989.
[Bruhat 1956] F. Bruhat, `Sur les repr\'{esentations induites des groups de Lie', Bull. Soc. Math. France 84 (1956), pp. 97-205.
[Bruhat 1961] F. Bruhat, `Distributions sur un groupe localement compacte et applications a l'\'{etude des repr\'{esentations des groups p-adiques', Bull. Math. Soc. France 89 (1961), pp. 43-75.
[Bruhat 1966] F. Bruhat, `p-adic groups', in Proc. Symp. Pure Math. no. 9, AMS, Providence, 1966, pp. 63-70.
[Bruhat-Tits 1966] F. Bruhat and J. Tits, `BN-paires de type affine et donn\'{ees radicielles', C.R. Acad. Sci. Paris serie A, vol 263 (1966), pp. 598-601; `Groupes simples residuellement d\'{eploy\'{es sur un corps local', ibid, pp. 766-768; `Groupes alg\'{ebriques simples sur un corps local', ibid, pp. 822-825; `Groupes alg\'{ebriques simple sur un corps local: cohomologie galoisienne, decomposition d'Iwasawa et de Cartan', ibid, pp. 867-869.
[Bruhat-Tits 1972] F. Bruhat and J. Tits, `Groupes Reductifs sur un Corps Local, I: Donn\'{ees radicielles valu\'{ees', Publ. Math. I.H.E.S. 41 (1972), pp. 5-252.
[Bruhat-Tits 1984] F. Bruhat and J. Tits, `Groupes Reductifs sur un Corps Local, II: Sch\'{emas en groups, existence d'une donn\'{ee radicielle valu\'{ee', Publ. Math. I.H.E.S. 60 (1984), pp. 5-184.
[Burnside 1987] W. Burnside, Theory of groups of finite order, Cambridge Univ. Press, 1887.
[Cartier 1977] P. Cartier, `Representations of p-adic groups: A survey', in Automorphic Forms, Representations, and L-functions, Proc. Symp. Pure Math. vol. 33 part I, pp. 111-156.
[Casselman 1975] W. Casselman, Introduction to the Theory of Admissible Representations of p-adic Reductive Groups, unpublished, dated 1975.
[Casselman 1980] `The unramified principal series of p-adic groups, I: the spherical function', Comp. Math. vol 40 fasc. 2 (1980), pp. 387-406.
[Casselman-Milicic 1982] W. Casselman and D. Milicic, `Asymptotic behavior of matrix coefficients of admissible representations', Duke J. Math. 49 (1982), pp. 869-930.
[Casselman-Shalika 1980] W. Casselman and J. Shalika, `The unramified principal series of p-adic groups, II: the Whittaker function', Comp. Math. vol 41 fasc. 2 (1980), pp. 207-231.
[Chevalley 1946] C. Chevalley, Theory of Lie Groups, I, Princeton University Press, 1946.
[Chevalley 1951-2] C. Chevalley, Theory of Lie Groups, II, III, Hermann, Paris, 1951-52.
[Coxeter 1934] H.S.M. Coxeter, `Discrete groups generated by reflections', Annals of Math. 35 (1934), pp. 588-621.
[DeConcini 1986] `Equivariant embeddings of homogeneous spaces', Proc. ICM, Berkeley 1986, pp. 367-376.
[Deligne 1970] P. Deligne, `Travaux de Shimura', Sem. Bourb. 23, 1970-71, expose 389, in Lecture Notes in Math. 244, pp. 123-165, Springer, 1972.
[Deligne 1973] P. Deligne, `Formes modulaires et repr\'{esentations de $GL(2)$', in Modular Functions of One Variable, II, Lecture Notes in Math. no. 349, Springer-Verlag, 1973, pp. 55-106.
[Deligne 1977] P. Deligne, `Valeurs des fonctions L et p\'{eriodes d'int\'{egrales', in Automorphic Forms, Representations, and L-functions, Proc. Symp. Pure Math. vol. 33 part II, pp. 313-346.
[Deligne 1977a] P. Deligne, `Vari\'{et\'{e de Shimura: interpr\'{etation modulaire et techniques de construction de mod\`{eles canoniques', in Automorphic Forms, Representations, and L-functions, Proc. Symp. Pure Math. vol. 33 part II, pp. 247-290.
[Deligne-Lusztig 1976] P. Deligne and G. Lusztig, `Representations of reductive groups over finite fields', Annals of Math. 103 (1976), pp. 103-161.
[Deligne-Lusztig 1982] P. Deligne and G. Lusztig, `Duality for representations of a reductive group over a finite field', J. of Algebra 74 (1982), pp. 284-291.
[Deligne-Lusztig 1983] P. Deligne and G. Lusztig, `Duality for representaions of a reductive group over a finite field, II', J. of Algebra 81 (1983), pp. 540-545.
[Deligne, Milne, Ogus, Shih 1982] P. Deligne, J. Milne, A. Ogus, K. Shih, Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics no. 900, Springer, New York, 1982.
C. Deninger, `On the gamma factors attached to motives', Inv. Math. 104 (1991), pp. 245-262.
C. Deninger, `Local L-factors of motives and regularized determinants', Inv. Math. 107 (1992), pp. 137-150.
[Duflo 1984] M. Duflo, `On the Plancherel formula of almost-algebraic real Lie groups', in Lecture Notes in Math. no. 1077, Springer-Verlag, 1984, pp. 101-165.
L. Ehrenpreis, `On the theory of kernels of Schwartz', Proc. A.M.S. vol. 7 no. 4 (1956), pp. 713-718.
[Faltings 1984] G. Faltings, `Arithmetische Kompaktifizierung des Modulraumes der abelschen Varietaten', Lecture Notes in Math 1111, Springer-Verlag 1985.
[Feit 1986] P. Feit, Poles and Residues of Eisenstein series for Symplectic and Unitary Groups, Mem. Amer. Math. Soc. no. 61, AMS, 1986.
[Flath 1977] D. Flath, `Decomposition of representations into tensor products', in Automorphic Forms, Representations, and L-functions, Proc. Symp. Pure Math. vol. 33 part I, pp. 179-184.
[Freitag 1983] E. Freitag, Siegelsche Modulfunktionen, Grundl. math. WIss. 254, Springer-Verlag 1983.
[Freitag 1990] E. Freitag, Hilbert Modular Forms, Springer-Verlag 1990.
[Furstenberg 1963] H. Furstenberg, `A Poisson formula for semi-simple Lie groups', Annals of Math. 77 (1963), pp. 335-386.
[Furstenberg 1972] H. Furstenberg, `Boundaries of symmetric spaces', in Symmetric Spaces, ed. W. Boothby and G. Weiss, Marcel Dekker, New York, 1972.
[Garrett 1981] P.B. Garrett, `Arithmetic properties of Fourier-Jacobi expansion of automorphic forms in several variables', Amer. J. Math. 103 (1981), pp.1103-1134.
[Garrett 1982] P.B. Garrett, `Modular curves on arithmetic quotients', Duke J. Math. 49 (1982), pp. 633-654.
[Garrett 1983a] P.B. Garrett, `Arithmetic and structure of automorphic forms on bounded symmetric domains', Amer. J. Math. 105 (1983), pp. 1171-1194.
[Garrett 1983b] P.B. Garrett, `Arithmetic and structure of automorphic forms on bounded symmetric domains, II', Amer. J. Math. 105 (1983), pp. 1195-1216.
[Garrett 1983c] P.B. Garrett, `Pullback of Eisenstein series; applications', in Automorphic Forms of Several Variables', ed. I Satake and Y. Morita, Birkhauser, Boston, 1984.
[Garrett 1984] P.B. Garrett, `Imbedded modular curves and arithmetic of automorphic forms on bounded symmetric domains', Duke J. Math. 51 (1984), pp. 431-458.
[Garrett 1985] P.B. Garrett, `Integral representations of certain L-functions attached to 1,2, and 3 modular forms', preprint, University of Minnesota, 1985.
[Garrett 1986] P.B. Garrett, `Theta Correspondences on Unitary Groups', Contemporary Mathematics, vol. 53, Birkhauser, Boston, 1986.
[Garrett 1987] P.B. Garrett, `Decomposition of Eisenstein series: Rankin triple products', Annals of Mat. 125 (1987), pp. 209-237.
[Garrett 1988] P.B. Garrett, `Integral representations of Eisenstein series and L-functions', in Number Theory, Trace Formulas, and Discrete Groups, Academic Press, 1988.
[Garrett 1990] P.B. Garrett, Holomorphic Hilbert Modular Forms, Wadsworth-Brooks-Cole, 1990.
[Garrett 1992] P.B. Garrett, `On the arithmetic of Siegel-Hilbert cuspforms: Petersson inner products and Fourier coefficients', Inv. Math. 107 (1992), pp. 453-481.
[Garrett-Harris 1993] P.B. Garrett and m. Harris, `Special values of triple product L-functions', Amer. J. Math. 115 (1993), pp. 159-238.
[Gelbart 1987] S. Gelbart, `Recent results on automorphic L-functions', in Proc. of Symp. in honor of A. Selberg, Oslo, 1987, Academic Press, 1988.
[Gelbart, Piatetski-Shapiro, Rallis 1987] S. Gelbart, I. Piatetski-Shapiro, S. Rallis, Explicit Constructions of Automorphic L-functions, Lecture Notes in Mathematics no. 1254, Springer, New York, 1987.
[Gelbart-Shahidi 1988] S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-functions, Academic Press, New York, 1988.
[Gelfand 1950] I.M. Gelfand, `Spherical functions on symmetric spaces', Dokl. Akad. Nauk SSSR 70 (1950), pp. 5-8.
[Gelfand 1962] I.M. Gelfand, `Automorphic functions and the theory of representations', in Proceedings, International Congress of Mathematicians, Stockholm, 1962, pp. 74-85.
[Gelfand-Graev 1962] I.M. Gelfand and M.I. Graev, `Construction of irreducible representations of simple algebraic groups over a finite field', Dokl. Akad. Nauk SSSR 147 (1962), pp. 529-532; English trans. in Soviet Math. Dokl. 3 (1962).
[Gelfand-Kazhdan 1975] I.M. Gelfand and D. Kazhdan, `Representations of the group $GL(n,k)$ where $k$ is a local field', in Lie Groups and their Representations, Halsted, New York, 1975, pp. 95-118.
[Gelfand-Naimark 1947] I.M. Gelfand and M.A. Naimark, `Unitary representations of the Lorentz group', Izvestia Akad. Nauk. SSSR Ser. Math. 11 (1947), pp. 411-504.
[Gelfand-Naimark 1950] I.M. Gelfand and M.A. Naimark, `Unitary representations of the classical groups', Trudy Mat. Inst. Steklov 36 (1950).
[Godement 1952] R. Godement, `A theory of spherical functions I', Trans. Amer. Math. Soc. 73 (1952), pp. 496-556.
[Godement 1963] R. Godement, `Domaines fondamentaux des groupes arithmetiques', Sem. Bourb. no. 257 (1962-3).
[Godement 1966] R. Godement, `The decomposition of $L^2(\Gam\ba G)$ for $\Gam=SL(2,\Z)$', in Proc. Symp. Pure Math. IX, A.M.S., Providence, 1966, pp. 211-224.
[Godement 1966b] R. Godement, `The spectral decomposition of cuspforms', in Proc. Symp. Pure Math. IX, A.M.S., Providence, 1966, pp. 225-234.
[Godement-Jacquet 1972] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Mathematics no. 260 (1972), Springer-Verlag, New York, 1972.
[Gotzky 1928] F. Gotzky, `Uber eine zahlentheoretische Anwendung von Modulfunktionen zweier Veranderlicher', Math. Ann. 100 (1928), pp. 411-37.
[Gross 1991] B. Gross, `Some applications of Gelfand pairs to number theory', Bull. A.M.S. 24, no. 2 (1991), pp. 277-301.
[Gross-Kudla 1992] B. Gross and S.S. Kudla, `Heights and the central critical values of triple product L-functions', Comp. Math. 81 (1992), pp. 143-209.
A. Grothendieck, Ann. Inst. Fourier vol. 4 (1952), pp. 73-112.
A. Grothendieck, `Sur les espaces $\cF$ et $\cL\cF$'', Summa Brasil. Math. 3 (1954), pp. 57-123.
A. Grothendieck, Products rensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc. 16 (1955).
[Gustafson 1981] R. Gustafson, The Degenerate Principal Series for $Sp(2n)$, Memoirs of A.M.S. vol. 33, 1981.
[Harish-Chandra 1951] Harish-Chandra, `On some applications of the universal enveloping algebra of a semisimple Lie algebra', Trans. Amer. Math. Soc. 70 (1951), pp. 28-96.
[Harish-Chandra 1953] Harish-Chandra, `Representations of a semisimple Lie group on a Banach space I', Trans. Amer. Math. Soc. 75 (1953), pp. 185-243.
[Harish-Chandra 1954] Harish-Chandra, `Representations of semisimple Lie groups II', Trans. Amer. Math. Soc. 76 (1954a), pp. 26-65.
[Harish-Chandra 1954b] Harish-Chandra, `Representations of semisimple Lie groups III', Trans. Amer. Math. Soc. 76 (1954), pp 234-253.
[Harish-Chandra 1955] Harish-Chandra, `Representations of semisimple Lie groups IV', Amer. J. Math 77 (1955), pp. 743-777.
[Harish-Chandra 1954c] Harish-Chandra, `Representations of semisimple Lie groups V', Proc. Nat. Acad. Sci. USA 40 (1954), pp. 1076-1077.
[Harish-Chandra 1956] Harish-Chandra, `Representations of semisimple Lie groups VI', Amer. J. Math 78 (1956), pp. 564-628.
[Harish-Chandra 1965] Harish-Chandra, `Invariant eigendistributions on a semisimple Lie algebra', Publ. Math. I.H.E.S. 27 (1965), pp. 5-54.
[Harish-Chandra 1965b] Harish-Chandra,`Invariant eigendistributions on a semisimple Lie group', Trans. Amer. Math. Soc. 119 (1965), pp. 457-508.
[Harish-Chandra 1965c] Harish-Chandra, `Discrete series for semisimple Lie groups, I: construction of invariant eigendistributions', Acta Math. 113 (1965), pp. 241-318.
[Harish-Chandra 1966] Harish-Chandra, `Discrete series for semisimple Lie groups, II: explicit determination of the characters', Acta Math. 116 (1966), pp. 1-111.
[Harish-Chandra 1975] Harish-Chandra, `Harmonic analysis on real reductive groups I: the theory of the constant term', J. Funct. Anal. 19 (1975), pp. 104-204.
[Harish-Chandra 1976] Harish-Chandra, `Harmonic analysis on real reductive groups II: wave packets in the Schwartz space', Inv. Math. 36 (1976), pp. 1-55.
[Harish-Chandra 1976b] Harish-Chandra, `Harmonic analysis on real reductive groups I: the Maass-Selberg relations and the Plancherel formula', Annals of Math. 104 (1976), pp. 117-201.
[Harish-Chandra, van Dijk 1970] Harish-Chandra and G. van Dijk, Harmonic Analysis on Reductive p-adic Groups, Lecture Notes in Mathematics no. 162 (1970), Springer-Verlag, New York, 1970.
[Harish-Chandra and Silberger 1973] A. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Princeton University Press, 1979.
[Harris 1981] M. Harris, `Special values of zeta functions attached to Siegel modular forms', Ann. Sci. ENS t. 14 (1981), pp. 77-120.
[Harris 1981b] M. Harris, `The rationality of holomorphic Eisenstein series', Inv. Math. 63 (1981), pp. 305-310.
[Harris 1981c] M. Harris, `Maass operators and Eisenstein series', Math. Ann. 258 (1981), pp. 135-144.
[Harris 1981d] M. Harris, `The rationality of holomorphic Eisenstein series', Inv. Math. 63 (1981), pp. 305-310.
[Harris 1984] M. Harris, `Eisenstein series on Shimura varieties', Ann. of Math. 119 (1984), pp. 59-94.
[Harris 1985] M. Harris, `Arithmetic vector bundles and automorphic forms on Shimura varieties, I', Inv. Math. 82 (1985), pp. 151-189.
[Harris 1986] M. Harris, `Arithmetic vector bundles and automorphic forms on Shimura varieties, II', Comp. Math. 60 (1986), pp. 323-378.
[Harris-Kudla 1991] M. Harris and S. Kudla, `The central critical value of a triple product L-function', Annals of Math. 133 (1991), pp. 605-672.
[Hecke 1937] E. Hecke, `\"{Uber modulfunctionen und Dirichletscher Reihen mit Eulerscher Produktentwiklung, I,II', Math. Ann. 114 (1937), pp. 1-28 and 316-351.
[Helgason 1970] S. Helgason, `A duality for symmetric spaces with applications to group representations', Adv. Math. 5 (1970), pp. 1-154.
[Helgason 1974] S. Helgason, `Eigenspaces of the Laplacian: integral representations and irreducibility', J. Funct. Anal. 17 (1974), pp. 328-353.
[Heumos-Rallis 1990] M.J. Heumos and S. Rallis, `Symplectic-Whittaker models for GL(n)', Pac. J. Math. 146 no. 2 (1990), pp. 247-279.
[Howe 1977] R. Howe, `Some qualitative results on the representation theory of GL(n) over a local field', Pacific J. Math. 73 no. 2 (1977), pp. 479-538.
[Howe and Piatetski-Shapiro], `A counter-example to the generalized Ramanujan conjecture', in Proc. Symp. Pure Math. no. 33, part I, AMS, Providence, 1979, pp. 315-322.
[Humphreys 1990] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, 1990.
[Igusa 1962] J.-I. Igusa, `On Siegel modular forms of genus two', Amer. J. Math. 84 (1962), pp. 175-200.
[Igusa 1964] J.-I. Igusa, `On Siegel modular forms of genus two, II', Amer. J. Math. 86 (1964), pp. 392-412.
[Igusa 1972] J.-I. Igusa, Theta Functions, Grundl. math. Wiss. 194, Springer-Verlag, 1972.
[Ikeda 1989] T. Ikeda, `On the functional equations of triple L-functions', J. Math. Kyoto Univ. 29 (1989), pp. 175-219.
[Ikeda 1992] T. Ikeda, `On the location of poles of the triple L-functions', Comp. Math. 83 no. 2 (1992), pp. 187-238.
[Iwahori 1966] N. Iwahori, `Generalized Tits system (Bruhat decomposition) on p-adic semi-simple groups', in Proc. Symp. Pure Math. no. 9, AMS, Providence, 1966, pp. 71-83.
[Iwahori-Matsumoto 1965] N. Iwahori and H. Matsumoto, `On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups', Publ. Math. I.H.E.S. 25 (1965), pp. 5-48.
[Jacquet 1970] H. Jacquet, `Repr\'{esentations des groupes lineaires p-adiques', in C.I.M.E. Summer School on the Theory of Group Representations and Harmonic Analysis, Montecatini, 1970.
[Jacquet 1972] H. Jacquet, Automorphic Forms on $GL(2)$, II, Lecture Notes in Mathematics no. 278, Springer-Verlag, New York, 1972.
[Jacquet-Langlands 1970] H. Jacquet and R.P. Langlands, Automorphic Forms on $GL(2)$, Lecture Notes in Mathematics no. 114, Springer-Verlag, New York, 1970.
[Jacquet, Piatetski-Shapiro, Shalika 1979] H. Jacquet, I. Piatetski-Shapiro, and J. Shalika, `Automorphic forms on $GL(3)$', Annals of Math. 109 (1979), pp. 169-258.
[Jacquet, Piatetski-Shapiro, Shalika 1983] H. Jacquet, I. Piatetski-Shapiro, and J. Shalika, `Rankin-Selberg convolutions', Amer. J. Math. vol. 105 (1983), pp. 367-464.
[Jacquet-Shalika 1981] H. Jacquet and J. Shalika, `On Euler products and the classification of automorphic representations, I', Amer. J. Math. vol. 103 (1981), pp. 499-558.
[Jacquet-Shalika 1981b] H. Jacquet and J. Shalika, `On Euler products and the classification of automorphic representations, II', Amer. J. Math. vol. 103 (1981), pp. 777-815.
[Klingen 1962] H. Klingen, `\"{Uber die Werte der Dedekindschen Zetafunctionen', Math. Ann. 145 (1962), pp. 265-272.
[Klingen 1962a] H. Klingen, `\"{Uber den arithmetischen Charakter der Fourierkoeffizienten von Modulformen', Math. Ann. 147 (1962), pp. 176-188.
[Klingen 1967] H. Klingen, `Zum Darstellungssatz fur Siegelsche Modulformen', Math. Z. 102 (1967), pp. 30-43.
[Kloosterman 1928] H.D. Kloosterman, `Theorie der Eisensteinschen Reihen von mehreren Ver\"{anderlichen', Abh. Math. Sem. Univ. Hamburg 6 (1928), pp. 163-188.
[Klyachko 1984] A.A. Klyachko, `Models for the complex representations of the groups $GL(n,q)$', Math. USSR Sbornik 48 no. 2 (1984), pp. 365-379.
[Knapp 1986] A. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, 1986.
[Knapp 1988] A. Knapp, Lie Groups, Lie Algebras, and Cohomology, Princeton University Press, 1988.
[Kneser 1965] M. Kneser, `Starke Approximation in algebraischen Gruppen, I', J. Reine Angew. Math. 218 (1965), pp. 190-203.
[Koranyi 1965] A. Koranyi, `The Poisson integral for generalized half-planes and bounded symmetric domains', Ann. of Math. 82 (1965), pp. 332-350.
[Koranyi 1969] A. Koranyi, `Harmonic functions on hermitian hyperbolic space', Trans. A.M.S. 135 (1969), pp. 507-516.
[Koranyi 1976] A. Koranyi, `Poisson integrals and boundary components of symmetric spaces', Inv. Math. 34 (1976), pp. 19-35.
[Kudla 1978] S.S. Kudla, `Intersection numbers for quotients of the complex 2-ball and Hilbert modular forms', Inv. Math. 47 (19780, pp. 189-208.
[Kudla 1981] S.S. Kudla, `Holomorphic Siegel modular forms associated to SO(n,1)', Math. Ann. 256 (1981), pp. 517-534.
[Kudla 1983] S.S. Kudla, `Seesaw dual reductive pairs', in Automorphic Forms in Several Variables, Taniguchi Symposium, Katata, 1983, Birkhauser, Boston, 1984, pp. 244-268.
[Kudla-Rallis 1988] S.S. Kudla and S. Rallis, `On the Weil-Siegel Formula, I', J. reine angew. Math. 387 (1988), pp. 1-68; `On the Weil-Siegel Formula, II', ibid 391 (1988), pp. 65-84.
[Kudla-Rallis 1990] S.S. Kudla and S. Rallis, `Degenerate principal series and invariant distributions', Israel J. Math. 69 no. 1 (1990), pp. 25-45.
[Kudla-Rallis 1992] S.S. Kudla and S. Rallis, `Ramified degenerate principal series representations for Sp(n)', Israel J. Math. 78 (1992), pp. 209-256.
[Langlands 1967] R.P. Langlands, Euler Products, Yale University Press, James K. Whitmore Lectures, 1967.
[Langlands 1964] R.P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Mathematics no. 544, Springer-Verlag, New York, 1976.
[MacDonald 1972] I.G. MacDonald, Spherical Functions on Groups of p-adic Type, Publications of the Ramanujan Institute for Advanced Study, no. 2, 1972.
[Mackey 1976] G.W. Mackey, Theory of Unitary Group Representations, University of Chicago Press, 1976. \medski
[Matsumoto 1977] H. Matsumoto, Analyse Harmonique dans les systems de Tits bornologiques de type affine, Lecture Notes in Math. no. 590, Springer-Verlag, 1977.
[Mostow-Tamagawa 1962] G.D. Mostow and T. Tamagawa, `On the compactness of arithmetically defined homogeneous spaces', Ann. of Math. 76 (1962), pp. 446-463.
[Novodvorsky 1977] M. Novodvorsky, `Automorphic L-functions for the symplectic group GSp(4) [sic]', in Proc. Symp. Pure Math. no. 33, part II, AMS, Providence, 1979, pp. 87-96.
[Novodvorsky and Piatetski-Shapiro 1975] M. Novodvorsky and I. Piatetski-Shapiro, `Rankin-Selberg method in the theory of automorphic forms', in Proc. Symp. Pure Math. no. 30, , AMS, Providence, 1977, pp. 297-301.
[Novodvorsky and Piatetski-Shapiro 1975] M. Novodvorsky and I. Piatetski-Shapiro, 'On zeta functions of infinite-dimensional representations', Mat. Sb. 92 (134) (1973), pp. 507-517 = Math. Ussr Sb. 21 (1973), pp. 499-510.
[Oda 1981] T. Oda, `On the poles of Andrianov L-functions', Math. Ann. 256 (1981), pp. 323-340.
[Piatetski-Shapiro 1975] I. Piatetski-Shapiro, `Euler subgroups', in Lie Groups and their Representations, Halsted, New York, 1975.
[Piatetski-Shapiro and Rallis 1987] I. Piatetski-Shapiro and S. Rallis, `Rankin triple L-functions', Comp. Math. 64 (1987), pp. 31-115.
[Prasad 1990] D. Prasad, `Trilinear forms for GL(2) of a local field and epsilon-factors', Comp. Math. 75 no. 1 (1990), pp. 1-46.
[Rankin 1939] R. Rankin, `Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetic functions, I', Proc. Cam. Phil. Soc. 35 (1939), pp. 351-372.
[Rossi-Vergne 1976] H. Rossi and M. Vergne, `Analytic continuation of the holomorphic discrete series of a semisimple Lie group', Acta Math. 136 (1976), pp. 1-59.
[Satake 1963] I. Satake, `Theory of spherical functions on reductive algebraic groups over p-adic fields', Publ. Math. I.H.E.S. 18 (1963), pp. 1-69.
[Satake 1966] I. Satake, `Spherical functions and Ramanujan conjecture', in Proc. Symp. Pure Math. no. 9, AMS, Providence, 1966, pp. 258-264.
L. Schwartz, `Theorie des noyaux', Proc. Int'l Cong. Math, Cambridge, 1950, vol. I, pp. 220-230.
[Selberg 1940] A. Selberg, Bemerkungen \"{uber eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist', Arch. Math. Naturvid 43 (1940), pp. 47-50.
[Seminar 1970] Seminar on Algebraic Groups and Related Finite Groups, Inst. for Advanced Study 1968-9, Lecture Notes in Math. 131, Springer-Verlag, 1970.
[Serre 1962] J.-P. Serre, Corps Locaux, Hermann, Paris, 1962; English trans. Local Fields, Springer -Verlag, 1979.
[Serre 1977] J.-P. Serre, `Arbres, Amalgames, et $SL_2$', Ast\'{erisque 46 (1977); English trans. Trees, Springer-Verlag, 1980.
[Shimura 1963] G. Shimura, `On modular correspondences for $Sp(n,\Z)$ and their congruence relations', Proc. Nat. Acad. Sci. USA 49 (1963), pp. 824-828.
[Shimura 1970] G. Shimura, `On canonical models of arithmetic quotients of bounded symmetric domains I,II', Ann. of Math. 91 (1970), pp. 144-222; ibid 92 (1970), pp. 528-549.
[Shimura 1975] G. Shimura, `On some arithmetic properties of modular forms in one and several variables', Ann. of Math. 102 (1975), pp. 491-515.
[Shimura 1975a] G. Shimura, `On Fourier coefficients of modular forms of several variables', Nachr. Wiss. Gott. no. 17 (1975), pp. 261-268.
[Shimura 1978] G. Shimura, `The arithmetic of automorphic forms with respect to a unitary group', Ann. of Math. 107 (1978), pp. 569-605.
[Shimura 1978a] G. Shimura, `On some problems of algebraicity', Proc. Int. Cong. Math. 1978 vol. I, pp. 373-379.
[Shimura 1979] G. Shimura, `Automorphic forms and the periods of abelian varieties', J. Math. Soc. Japan 31 (1979), pp. 561-592.
[Shimura 1980] G. Shimura, `The arithmetic of certain zeta functions and automorphic forms on orthogonal groups', Ann. of Math. 111 (1980), pp. 313-375.
[Shimura 1983a] G. Shimura, `On Eisenstein series', Duke J. Math. 50, (1983), pp. 417-476.
[Shimura 1983b] G. Shimura, `Algebraic relations between critical values of zeta functions and inner products', Amer. J. Math. 104 (1983), pp. 253-285.
[Shimura 1984] G. Shimura, `Differential operators and the singular values of Eisenstein series', Duke J. Math. 51 (1984), pp. 261-329.
[Shimura 1988] G. Shimura, `On the critical values of certain Dirichlet series and the periods of automorphic forms' Inv. Math. 94 (1988), pp. 245-305.
[Shimura-Taniyama 1961] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publ. Math. Soc. Japan, vol. 6, 1961.
[Siegel 1939] C.L. Siegel, `Einfuhrung in die theorie modulfunktionen n-ten Grades', Math. Ann. 116 (1939), pp. 617-657.
[Tate 1950] J. Tate, Ph.D. thesis, Princeton University, 1950, reprinted in Algebraic Number Theory, ed. J.W.S. Cassels and A. Frohlich, Thompson Book Co., Washington, D.C., 1967.
[Taylor 1981] M. Taylor, Pseudodifferential Operators, Princeton University Press, 1981.
[Tits 1962] J. Tits, `Th\'{eor\`{eme de Bruhat et sous-groupes paraboliques', C.R. Acad. Sci. Paris Ser. A 254 (1962), pp. 2910-2912.
[Tits 1966] J. Tits, `Classification of algebraic semi-simple groups', in Proc. Symp. Pure Math. 9, AMS, Providence, 1966, pp. 33-62.
[Tits 1968] J. Tits, `Le Probl\`{eme des mot dans les groupes de Coxeter', 1st Naz. Alta Mat., Symp. Math., 1 (1968), pp. 175-185.
[Tits 1974] J. Tits, ` Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Math. 386, Springer-Verlag, 1974.
[Tits 1977] J. Tits, `Endliche Spiegelungsgruppen, die als Weylgruppen auftreten', Inv. math. 45 (1977), pp. 283-295.
[Tits 1979] J. Tits, `Reductive groups over local fields', in Proc. Symp. Pure Math. 33, vol. 1, AMS, Providence, 1979, pp. 29-69.
[Tits 1985] J. Tits, `Groups and group functors attached to Kac-Moody data', in Arbeitstagung, Bonn, 1984, Lecture Notes in Math 1111, Springer-Verlag, 1985, pp. 193-223.
[Wallach 1992] N. Wallach, Real Reductive Groups I,II, Academic Press, 1988, 1992.
[Weil 1961] A. Weil, Adeles and algebraic groups, Princeton, 1961; reprinted Birkhauser, Boston, 1982.
[Weil 1965] A. Weil, Integration dans les groupes topologiques et ses applications, Actualites Sci. Ind. 1145, Hermann, Paris, 1965.
[Weil 1967] A. Weil, Basic Number Theory, Springer-Verlag, New York, 1967.
[Wigner 1939] E. Wigner, `On unitary representations of the inhomogeneous Lorentz group', Annals of Math. 40 (1939), pp. 149-204.
[Wolf 1972] J. Wolf, `Fine structure of hermitian symmetric spaces', in Symmetric spaces, short lectures, Marcel-Dekker, New York, 1972.
[Zagier 1977] D. Zagier, `Modular forms whose Fourier coefficients involve zeta functions of quadratic fields', in Modular Functions of One Variable, VI, Lecture Notes in Mathematics no. 627, Springer Berlin-Heidelberg-New York 1977, pp. 107-169.
[Zelevinsky 1980] A.V. Zelevinsky, `Induced representations of the group $GL(n)$ over a p-adic field, II. On irreducible representations of $GL(n)$', Ann. Sci. ENS (IV) 13 (1980), pp. 165-210.