Full Publication List
- C. Kim and D. Q. Nykamp. The influence of depolarization block on seizure-like activity in networks of excitatory and inhibitory neurons. Journal of Computational Neuroscience, 43:65-79, 2017. Pubmed, Publisher's web site
- D. Q. Nykamp, A. Compte, D. Friedman, S. Shaker, M. Shinn, M. Vella, A. Roxin. Mean-field equations for neuronal networks with arbitrary degree distributions. Physical Review E, 95: 042323, 2017. Pubmed, Publisher's web site, Preprint
- K. Wimmer, D. Q. Nykamp, C. Constantinidis, and A. Compte. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nature Neuroscience, 17: 431-439, 2014. Pubmed, Publisher's web site
- N.F. Day, K.L. Terleski, D. Q. Nykamp, and T. A. Nick. Directed
functional connectivity matures with motor learning in a cortical
pattern generator. Journal of Neurophysiology, 109: 913-923, 2013. Pubmed, Publisher's web site
- M. E. Koelling and D. Q. Nykamp. Searching for optimal stimuli:
ascending a neuron's response function. Journal
of Computational Neuroscience, 33: 449-473, 2012. Publisher's web site
- B. Beverlin II, J. Kakalios, D. Nykamp, and T.I. Netoff. Dynamical
changes in neurons during seizures determine tonic to clonic shift.
Journal of Computational Neuroscience, 33: 41-51, 2012. Publisher's web site
- L. Zhao, B. Beverlin II, T. Netoff, and D. Q. Nykamp.
Synchronization from second order network connectivity statistics.
Frontiers in Computational Neuroscience, 5:28, 2011.
HTML/PDF, Code to generate SONETs.
- C.-Y. Liu and D. Q. Nykamp. A kinetic theory
approach to capturing interneuronal correlation: The
feedforward case. Journal of Computational
Neuroscience, 26: 339-368,
2009. PDF, Publisher's
web site
- D. Q. Nykamp. A stimulus-dependent connectivity
analysis of neuronal networks. Journal of
Mathematical Biology, 59: 147-173,
2009. PDF, Publisher's
web site
- M. E. Koelling and D. Q. Nykamp. Computing linear approximations
to nonlinear neuronal response. Network: Computation in Neural
Systems, 19: 286-313, 2008. PDF,
Publisher's web
site
- D. Q. Nykamp. Pinpointing connectivity despite hidden nodes within
stimulus-driven networks. Physical Review E, 78:021902, 2008. PDF, Publisher's web
site
- D. Q. Nykamp. Exploiting history-dependent effects to infer network
connectivity. SIAM Journal on Applied Mathematics, 68:354-391, 2007. PDF, Publisher's web
site
- D. Q. Nykamp. A mathematical framework for inferring connectivity in
probabilistic neuronal networks. Mathematical Biosciences, 205: 204-251, 2007. PDF, Publisher's web
site
- D. Q. Nykamp.
Revealing pairwise coupling in linear-nonlinear networks.
SIAM Journal on Applied Mathematics, 65:2005-2032, 2005. PDF, Publisher's web site
- N. Wu, A. Enomoto, S. Tanaka, C.-F. Hsiao, D. Q. Nykamp,
E. Izhikevich, and S. H. Chandler. Persistent sodium currents in
mesencephalic V neurons participate in burst generation and
control of membrane excitability. Journal of
Neurophysiology, 93:2710-2722, 2005. Publisher's
web site
- D. Q. Nykamp. Measuring linear and quadratic contributions to
neuronal response. Network: Computation in Neural Systems,
14:673-702, 2003. PDF, Publisher's web site
- D. Q. Nykamp. Reconstructing stimulus-driven neural networks from
spike times. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 309-316. MIT Press, Cambridge, MA, 2003. PDF, Gzipped Postscript
- D. Q. Nykamp. White noise analysis of coupled linear-nonlinear
systems. SIAM Journal on Applied Mathematics, 63:1208-1230,
2003. PDF, Gzipped
Postscript, Publisher's web site
- D. Q. Nykamp. Spike correlation measures that eliminate stimulus
effects
in response to white noise. Journal of Computational Neuroscience,
14:193-209, 2003. PDF, Gzipped Postscript, Publisher's web site
- D. Q. Nykamp and D. L. Ringach. Full identification of a
linear-nonlinear
system via cross-correlation analysis. Journal of Vision,
2:1-11,
2002. HTML/PDF
- E. Haskell, D. Q. Nykamp, and D. Tranchina. Population density
methods for
large-scale modeling of neuronal networks with realistic synaptic
kinetics: Cutting the dimension down to size. Network: Computation
in
Neural Systems, 12:141-174, 2001. PDF,
Publisher's web
site
- D. Q. Nykamp and D. Tranchina. A population density approach that
facilitates large-scale modeling of neural networks: Extension to slow
inhibitory synapses. Neural Computation, 13:511-546, 2001. PDF, Gzipped
Postscript,
Publisher's web
site
- D. Q. Nykamp and D. Tranchina. Fast neural network simulations with
population density methods. Neurocomputing. 32:487-492, 2000. PDF, Gzipped
Postscript
- D. Q. Nykamp and D. Tranchina. A population density approach that
facilitates large-scale modeling of neural networks: analysis and an
application to orientation tuning. Journal of Computational
Neuroscience, 8:19-50, 2000. PDF,
Gzipped Postscript,
Publisher's web
site