Description
Multiple cameras are continually capturing our daily events involving social and physical interactions in a form of first person camera (e.g., google glass), cellphone camera, and surveillance camera. Multiview geometry is a core branch in computer vision that studies the 3D spatial relationship between cameras and scenes. This technology is used to localize and plan robots, reconstruct a city, e.g. Rome, from internet photos, and understand human behaviors using body-worn cameras. In this course, we will focus on 1) fundamentals of projective camera geometry; 2) implementation of 3D reconstruction algorithm; and 3) research paper review. The desired outcome of the course is for each student to have his/her own 3D reconstruction algorithm called "structure from motion". This will cover core mathematics of camera multiview geometry including perspective projection, epipolar geometry, point triangulation, camera resectioning, and bundle adjustment. This geometric concept will be then, in parallel, implemented to directly apply to domain specific research such as robot localization. This course includes a final term project that uses the multicamera system to build a creative system such as Robotics/AR/VR/Vision/Graphics.